吉首大学学报(自然科学版) ›› 2026, Vol. 47 ›› Issue (1): 41-48.DOI: 10.13438/j.cnki.jdzk.2026.01.007

• 电工技术 • 上一篇    下一篇

基于VMD-CNN-BiLSTM-RF模型的短期光伏发电功率预测

李立   

  1. (安庆职业技术学院信息技术学院,安徽 安庆 246003)
  • 出版日期:2026-01-25 发布日期:2026-01-30
  • 作者简介:李立(1980—),女,安徽桐城人,安庆职业技术学院信息技术学院教授,硕士,主要从事系统建模及优化研究.
  • 基金资助:
    安徽省高校自然科学研究重点项目(2024AH051153,2023AH053075)

Short-Term Photovoltaic Power Prediction Based on VMD-CNN-BiLSTM-RF

LI Li   

  1. (School of Information Technology,Anqing Vocational & Technical College,Anqing 246133,Anhui China)
  • Online:2026-01-25 Published:2026-01-30

摘要:针对光伏发电功率受天气影响导致的非平稳性、噪声干扰和时空耦合效应问题,设计了一种基于变分模态分解(VMD)、卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和随机森林(RF)的短期功率预测组合模型——VMD-CNN-BiLSTM-RF.该组合模型利用VMD将原始功率序列分解为多个平稳子模态,降低噪声及非平稳性影响;通过CNN-BiLSTM同时捕捉时间序列数据的空间特征和时间依赖关系,提高预测的准确性;采用RF集成各子模态预测结果,提升模型的泛化能力.基于Matlab平台搭建实验环境,对VMD-CNN-BiLSTM-RF组合模型开展对比实验和误差分析,结果表明VMD-CNN-BiLSTM-RF组合模型明显提升了短期光伏发电功率预测精度和鲁棒性.

关键词: 光伏发电, 功率预测, 变分模态分解, 卷积神经网络, 双向长短期记忆网络, 随机森林

Abstract: In response to the non-stationary nature and noise interference caused by weather affected photovoltaic power generation,as well as the spatiotemporal coupling effect,a short-term power prediction composite model VMD-CNN-BiLSTM-RF based on Variational Mode Decomposition (VMD),Convolutional Neural Network (CNN),Bi-directional Long Short-Term Memory(BiLSTM),and Random Forest (RF) is proposed.This model uses VMD to decompose the original power sequence into multiple stationary sub-modes,reducing the impact of noise and non-stationarity.It combines CNN with BiLSTM to simultaneously capture spatial features and temporal dependencies of time series data,improving the accuracy of predictions.RF is integrated with sub-model prediction results to enhance the model's generalization ability.An experimental environment was set up on the Matlab platform to conduct comparative experiments and error analysis for the VMD-CNN-BiLSTM-RF combined model.The results show that this model  has significantly improved the accuracy and robustness of short-term photovoltaic power generation prediction.

Key words: photovoltaic power, generation prediction, variational mode decomposition, convolutional neural network, bidirectional long-term and short-term memory network, random forest

公众号 电子书橱 超星期刊 手机浏览 在线QQ