吉首大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (4): 26-31.DOI: 10.13438/j.cnki.jdzk.2024.04.005

• 计算机与自动化 • 上一篇    下一篇

基于一维卷积神经网络的物联网终端非干扰身份识别方法

杨萌   

  1. (淮北职业技术学院计算机科学技术系,安徽 淮北 235000)
  • 出版日期:2024-07-25 发布日期:2024-07-23
  • 作者简介:杨萌(1979—),女,安徽淮北人,淮北职业技术学院计算机科学技术系讲师/工程师,硕士,主要从事计算机技术研究.
  • 基金资助:
    安徽省高校自然科学研究重点项目(KJ2021A1373,KJ2021A1376,KJ2020A0964);淮北职业技术学院自然科学研究重点项目(2020-A-5)

Non-Interference Identification Method of IoT Terminals Based on One-Dimensional Convolution Neural Network

YANG Meng   

  1. (Department of Computer Science and Technology,Huaibei Vocational and Technical College,Huaibei 235000,Anhui China)
  • Online:2024-07-25 Published:2024-07-23

摘要:针对物联网终端身份识别过程易受干扰的问题,设计了基于一维卷积神经网络的物联网终端非干扰身份识别方法.通过物联网终端内置的加速度传感器收集不同步态的加速度数据,并采用平滑与分窗处理进行预处理.利用步态数据融合模型分析用户在不同行为-位置组合下的数据,再利用随机森林模型预测物联网终端的位置与用户行为.将行为与位置数据融合,得到步态融合数据,再将融合数据输入至构建的一维卷积神经网络模型中,经过迭代训练后输出用户的身份识别结果.实验结果显示,基于一维卷积神经网络的物联网终端非干扰身份识别方法在合适的模型参数条件下能够准确识别物联网终端用户身份.

关键词: 卷积神经网络, 物联网终端, 非干扰, 身份识别, 步态数据, 行为-位置组合

Abstract: In view of the problem that IoT terminals are vulnerable to interference in the identification process,a non-interference identification method of IoT terminals based on one-dimensional convolution neural network is proposed.Acceleration data for different gaits are collected through the built-in acceleration sensor of the Internet of Things terminal and preprocessed through smoothing and windowing processing.Gait data fusion model is used to analyze user data under different behavior-position combinations,and random forest model is used to predict the position of IoT terminals and target data behavior.Behavioral target data are integrated with positional data to obtain gait fusion data.On this basis,a one-dimensional convolutional neural network model is constructed,which takes the fused data as input and outputs the user's identity recognition results after iterative training.The experimental results show that the non-interference identity recognition method for IoT terminals based on one-dimensional convolutional neural networks can accurately identify the identity of IoT terminal users in appropriate model parameter conditions.

Key words: convolution neural network, IoT terminal, non-interference, identification, gait data, behavior-position combination

公众号 电子书橱 超星期刊 手机浏览 在线QQ