吉首大学学报(自然科学版) ›› 2026, Vol. 47 ›› Issue (1): 29-40.DOI: 10.13438/j.cnki.jdzk.2026.01.006

• 数学 • 上一篇    下一篇

一种对称损失下Kumaraswamy分布参数的Bayes分析

张学成,徐宝   

  1. (吉林师范大学数学与计算机学院,吉林 四平136000)
  • 出版日期:2026-01-25 发布日期:2026-01-30
  • 作者简介:张学成(2001—),男,吉林长春人,吉林师范大学数学与计算机学院硕士研究生,主要从事Bayes统计研究
  • 基金资助:
    国家自然科学基金资助项目 (11571138);吉林省科技发展计划项目(YDZJ202201ZYTS622)

Bayesian Analysis of Kumaraswamy Distribution Parameters Under a Kind of Symmetric Loss 

ZHANG Xuecheng,XU Bao   

  1. (College of Mathematics and Computer Science,Jilin Normal University,Siping 136000,Jilin China)
  • Online:2026-01-25 Published:2026-01-30

摘要:在加权p,q对称熵损失函数下,利用Bayes估计方法估计Kumaraswamy分布参数,得到了参数的Bayes估计的一般形式和精确形式,证明了所得Bayes估计的可容许性和最小最大性,并给出了参数的多层Bayes估计、E-Bayes估计和刀切Bayes估计,进一步利用R软件结合Metropolis算法对Kumaraswamy分布参数的Bayes估计、E-Bayes估计和刀切Bayes估计进行了数值模拟.结果表明,Jeffreys先验分布下的Bayes估计比共轭先验分布下的Bayes估计的精度更高;采用刀切法可使同先验分布下的估计效果更好;选取合适的常数,E-Bayes估计的应用可降低超参数对模拟的影响.

关键词: Kumaraswamy分布, 损失函数, Bayes估计, 可容许性, Metropolis算法

Abstract: Under the weighted p,q symmetric entropy loss function,the Bayesian estimation method is used to estimate the Kumaraswamy distribution parameters,and the general and exact forms of the Bayesian estimation of the parameters are obtained,which proves the acceptability and minimum maximum of the obtained Bayesian estimation.The multi-level Bayesian estimation,E-Bayes estimation and knife-cut Bayesian estimation of the parameters are given.The numerical simulation of Bayes,E-Bayes and knife-cut Bayes estimation of Kumaraswamy distribution parameters is carried out by using R software combined with Metropolis algorithm.The results show that the Bayes estimation under the Jeffreys priors is more accurate than that under the conjugate prior distribution;the estimation properties under the same prior distribution can be better by using the knife cutting method;and the application of E-Bayes estimation can reduce the influence of hyperparameters on the simulation by selecting appropriate constants.

Key words: Kumaraswamy distribution, loss function, Bayesian estimation, admissibility, Metropolis algorithm

公众号 电子书橱 超星期刊 手机浏览 在线QQ