[1] SHARMA A SURJALAL,TASSO H.Connection Between Wave Envelope and Explicit Solution of a Nonlinear Dispersive Wave Equation[R].Max-Planck-Institut Fuer Plasmaphysik,1977.
[2] OLVER PETER J.Evolution Equations Possessing Infinitely Many Symmetries[J].Journal of Mathematical Physics,1977,18(6):1212-1215.
[3] VERHEEST FRANK,HEREMAN WILLY.Nonlinear Mode Decoupling for Classes of Evolution Equations[J].Journal of Physics A:Mathematical and General,1982,15(1):95-102.
[4] KAYA DO〖XC王晶12..tif〗AN,YOKU〖XC王晶10..tif〗ASI〖DD(-*4〗〖KG*3〗.〖DD)〗F,DEMIRO〖XC王晶12..tif〗LUU〖XC王晶12..tif〗UR.Comparison of Exact and Numerical Solutions for the Sharma-Tasso-Olver Equation[C].Cham:Springer International Publishing,2020:53-65.
[5] GUPTA A K,RAY S SAHA.The Petrov-Galerkin Finite Element Method for the Numerical Solution of Time-Fractional Sharma-Tasso-Olver Equation[J].International Journal of Modeling,Simulation,and Scientific Computing,2019,10(1):11-11.
[6] NASIR MUHAMMAD ALI,MUHAMMAD SYED HUSNINE,ASIT SAHA,et al.Exact Solutions,Conservation Laws,Bifurcation of Nonlinear and Supernonlinear Traveling Waves for Sharma-Tasso-Olver Equation[J].Nonlinear Dynamics,2018,94(3):1791-1801.
[7] GUO Yanan,CAO Xiaoqun,LIU Bainian,et al.Solving Partial Differential Equations Using Deep Learning and Physical Constraints[J].Applied Sciences,2020,10(17):5917-5917.
[8] RAISSI M,PERDIKARIS P,KARNIADAKIS G E.Physics-Informed Neural Networks:A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations[J].Journal of Computational Physics,2019,378:686-707.
[9] 李军.物理信息神经网络与可积方程的局域波[D].上海:华东师范大学,2021:8-9.
[10] BAYDIN A G,PEARLMUTTER BARAK A,RADUL ALEXEY ANDREYEVICH,et al.Automatic Differentiation in Machine Learning:A Survey[J].Machine Learning Research,2017,18(1):5595-5637.
[11] ERMI〖XC王晶10..tif〗〖KG-*7〗TEMEL,ZAIM ER〖XC王晶9..tif〗I〖DD(-*4〗〖KG*3〗.〖DD)〗NAR GAYE,GELI〖XC王晶10..tif〗〖KG-*7〗GEN ACAN.Fixed Ellipse Theorems in Metric Spaces and an Application of Discontinuous Activation Function in Neural Networks[J].Mathematical Methods in the Applied Sciences,2023,46(15):16037-16049.
[12] ZHOU Pan,FENG Jiashi,MA Chao,et al.Towards Theoretically Understanding Why SGD Generalizes Better Than ADAM in Deep Learning[J].Advances in Neural Information Processing Systems,2020,33:21285-21296.
[13] FENG Yingxin,DAI Houping,WEI Xuedan.Numerical Solutions to the Sharma-Tasso-Olver Equation Using Lattice Boltzmann Method[J].International Journal for Numerical Methods in Fluids,2023,95(9):1546-1564.
|