吉首大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 18-24.DOI: 10.13438/j.cnki.jdzk.2025.01.003

• 数学 • 上一篇    下一篇

基于PINN模型求解一维和二维STO方程

王晶,戴厚平,董亚茹   

  1. (吉首大学数学与统计学院,湖南 吉首 416000)
  • 出版日期:2025-01-01 发布日期:2025-01-20
  • 作者简介:王晶(1998—),女,山东临沂人,吉首大学数学与统计学院硕士研究生,主要从事微分方程数值解研究
  • 基金资助:
    湖南省教育厅科学研究重点项目(21A0329);湖南省自然科学基金资助项目(2021JJ30548)

Solving the One-and-Two Dimensional STO Equations Based on the PINN Method

WANG Jing,DAI Houping,DONG Yaru   

  1. (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
  • Online:2025-01-01 Published:2025-01-20

摘要:利用物理信息神经网络(PINN)模型求解一维和二维Sharam-Tasso-Olver方程.将宏观方程及其初边值条件作为物理信息并转化为残差形式,再利用残差构造损失函数融入到PINN模型的训练过程中,利用Adam优化算法实现高精度求解.数值算例结果表明,损失函数在一定的迭代次数下有较高的精度,这验证了STIO方程的PINN模型的求解有效性.

关键词: 神经网络, 物理信息神经网络, Sharam-Tasso-Olver方程

Abstract: Physically informed neural networks (PINN) model are used to solve the one-and two-dimensional Sharam-Tasso-Olver equations.
The macroscopic equations and their initial margin conditions are used as physical information and transformed into the form of residuals,which are then used to construct a loss function to incorporate into the training process of the PINN model,and the Adam optimisation algorithm is used to achieve a high-precision solution.The numerical example results show that the loss function has high accuracy under a certain number of iterations,which verifies the reliability of the PINN model.

Key words: neural networks, physically informed neural network, Sharam-Tasso-Olver equation

公众号 电子书橱 超星期刊 手机浏览 在线QQ