吉首大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (1): 1-11.DOI: 10.13438/j.cnki.jdzk.2025.01.001

• 数学 •    下一篇

广义约束条件下矩阵方程AXB+CXTD=E最佳逼近解的迭代算法

杨家稳,万鹏,梁金荣   

  1. (滁州职业技术学院基础教学部,安徽 滁州 239000)
  • 出版日期:2025-01-01 发布日期:2025-01-20
  • 作者简介:杨家稳(1972—),男,安徽滁州人,滁州职业技术学院基础教学部教授,硕士,主要从事最优化理论与算法研究.
  • 基金资助:
    安徽省高校自然科学重点项目基金(2023AH053087,KJ2018A0839)

Iterative Algorithm for the Optimal Approximation Solution of Matrix Equations AXB+CXTD=with Generalized Constraint 

YANG Jiawen,WAN Peng,LIANG Jinrong   

  1. (Department of Basic Course,Chuzhou Polytechnic,Chuzhou 239000,Anhui China)
  • Online:2025-01-01 Published:2025-01-20

摘要:为了计算广义约束条件GX=H下矩阵方程AXB+CXTD=E的最佳逼近解,设计了一种基于梯度投影与搜索方向正交的迭代算法.证明了任意给定一个满足广义约束条件的特殊初始矩阵,通过有限次迭代算法,能够获得广义约束条件下矩阵方程的极小范数最小二乘解,并利用该极小范数最小二乘解计算出最佳逼近解.极

关键词: 小范数最小二乘解, 最佳逼近解, 迭代算法, 梯度投影

Abstract: An iterative algorithm is presented to calculate the optimal approximation solution of the matrix equations AXB+CXTD=E with constraint conditions GX=H.It is proved that given a special initial matrix  satisfying the generalized constraints,the minimal norm least squares solution of the matrix equation under the generalized constraints can be obtained by the finite-order iterative algorithm,and the optimal approximation solution can be calculated by using the minimal norm least squares solution.

Key words: minimal norm least squares solution, optimal approximation solution, iterative algorithm, gradient projection

公众号 电子书橱 超星期刊 手机浏览 在线QQ