[1] BUCHBERGER B.An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal [D].Innsbruck:Innsbruck University,1965.
[2] ADAMS W,LOUSTAUNAU P.An Introduction to Grbner Bases [M].New York:Amer. Math. Soc.,1994.
[3] BECKER T,WEISPFENNING V.Grbner Bases——A Computational Approach to Commutative Algebra [M].New York:Springer-Verlag,1993.
[4] COX D,LITTLE J,O’SHEA D.Ideals,Varieties,and Algorithms [M].New York:Springer-Verlag,1996.
[5] 刘木兰.Grbner基理论及其应用 [M].北京:科学出版社,2000.
[6] HONG H.Grbner Basis Under Composition,II [C]// Proceedings of ISSAC 96.New York:ACM Press,1996:79-85.
[7] HONG H.Grbner Bases Under Composition,I [J].J. Symbolic Computation,1998,25:643-663.
[8] LIU J W,WANG M S.Homogeneous Grbner Bases Under Composition [J].J. Algebra.,2006,303:668-676.
[9] LIU J W,WANG M S.Further Results on Homogeneous Grbner Bases Under Composition [J].J. Algebra.,2007,315:134-143.
[10] 陈小松,唐胜.Noether整环上的复合Grbner基 [J].云南大学学报:自然科学版,2009,31(1):1-7.
[11] 陈小松,唐胜.Noether整环上不同项序下的复合Grbner基 [J].湘潭大学:自然科学学报.2008(4):1-5.
[12] GUTIERREZ J.Reduced Grbner Bases Under Composition [J].J. Symbolic Computation,1998,26:433-444.
[13] WANG M,LIU Z J.Remarks on Grbner Bases for Ideals Under Composition [C]// Proceedings of ISSAC 2001.New York:ACM Press,2001:237-244.
[14] LIU J W,LIU Z J,WANG M S.The Term Orderings Which are Compatible with Composition,II [J].J. Symbolic Computation,2003,35:153-168. |