[1] BUCHBERGER B.An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal [D].Innsbruck:Innsbruck University,1965.[2] ADAMS W,LOUSTAUNAU P.An Introduction to Grbner Bases [M].New York:Amer. Math. Soc.,1994.[3] BECKER T,WEISPFENNING V.Grbner Bases——A Computational Approach to Commutative Algebra [M].New York:Springer-Verlag,1993.[4] COX D,LITTLE J,O’SHEA D.Ideals,Varieties,and Algorithms [M].New York:Springer-Verlag,1996.[5] 刘木兰.Grbner基理论及其应用 [M].北京:科学出版社,2000.[6] HONG H.Grbner Basis Under Composition,II [C]// Proceedings of ISSAC 96.New York:ACM Press,1996:79-85.[7] HONG H.Grbner Bases Under Composition,I [J].J. Symbolic Computation,1998,25:643-663.[8] LIU J W,WANG M S.Homogeneous Grbner Bases Under Composition [J].J. Algebra.,2006,303:668-676.[9] LIU J W,WANG M S.Further Results on Homogeneous Grbner Bases Under Composition [J].J. Algebra.,2007,315:134-143.[10] 陈小松,唐胜.Noether整环上的复合Grbner基 [J].云南大学学报:自然科学版,2009,31(1):1-7.[11] 陈小松,唐胜.Noether整环上不同项序下的复合Grbner基 [J].湘潭大学:自然科学学报.2008(4):1-5.[12] GUTIERREZ J.Reduced Grbner Bases Under Composition [J].J. Symbolic Computation,1998,26:433-444.[13] WANG M,LIU Z J.Remarks on Grbner Bases for Ideals Under Composition [C]// Proceedings of ISSAC 2001.New York:ACM Press,2001:237-244.[14] LIU J W,LIU Z J,WANG M S.The Term Orderings Which are Compatible with Composition,II [J].J. Symbolic Computation,2003,35:153-168. |