[1] ZALINESCU C.Convex Analysis in General Vector Spaces[M].New Jersey:World Scientific,2002:99-100.
[2] DINH NGUYEN,GOBERNA MIGUEL A,LOPEZ MARCO A,et al.New Farkas-Type Constrain Qualifications in Convex Infinite Programming[J].ESAIM:Control,Optimization and Calculus of Variations,2007,13(3):580-597.
[3] FANG Donghui,LI Chong,NG K F.Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming[J].SIAM Journal on Optimization,2009,20(3):1311-1332.
[4] FANG Donghui,LI Chong,NG K F.Constraint Qualifications for Optimality Conditions and Total Lagrangian Dualities in Convex Infinite Programming[J].Nonlinear Analysis,2010,73(5):1143-1159.
[5] BOT RADU IOAN,GRAD SORIN MIHAI.Wolfe Duality and Mond-Weir Duality via Perturbations[J].Nonlinear Analysis,2010,73(2):374-384.
[6] LEEJAE HYOUNG,LEE GUE MYUNG.On ε-Solutions for Convex Optimization Problems with Uncertainty Data[J].Positivity,2012,16(3):509-526.
[7] LEEJAE HYOUNG,JIAO LIGUO.On Quasi ε-Solution for Robust Convex Optimization Problems[J].Optimization Letters,2017,11(8):1609-1622.
[8] JIAO Liguo,KIM DO SANG.Optimality Conditions for Quasi (α,ε)-Solutions in Convex Optimization Problems Under Data Uncertainty[J].Journal of Nonlinear and Convex Analysis,2019,2112(9):73-79.
[9] SUN Xiangkai,TEO KOK LAY,LONG Xianjun.Characterizations of Robust ε-Quasi Optial Solutions for Nonsmooth Optimization Problems with Uncertain Data[J].Optimization,2021,70(4):1-24.
[10] SUN Xiangkai,TEO KOK LAY,TANG Liping.Dual Approaches to Characterize Robust Optimal Solution Sets for a Class of Uncertain Optimization Problems[J].Journal of Optimization Theory and Applications,2019,182(3):984-1000.
[11] ZHONG Linan,JIN Yuanfeng.Optimality Conditions for Minimax Optimization Problems with an Infinite Number of Constraints and Related Applications[J].Acta Mathematicae Applicatae Sinica,2021,37(2):251-263.
[12] SUN Xiangkai,TEO KOK LAY,ZENG Jing,et al.Robust Approximate Optimal Solutions for Nonlinear Semi-Infinite Programming with Uncertainty[J].Optimization,2020,69(9):2109-2129.
[13] MORDUKHOVICH BORIS S.Variational Analysis and Generalized Differentiation,I:Basic Theory[M].Berlin:Springer,2006:81-90.
[14] ALEJANDRO J,DINH T L,MICHE T R.ε-Subdifferential and ε-Monotonicity[J].Nonlinear Analysis Theory Methods and Application,1998,33(1):71-90.
[15] LASSERRE JEAN BERNARD.On Representations of the Feasible Set in Convex Optimization[J].Optimization Letters,2010,4(1):1-5.
[16] DUTTA JOYDEEP,LALITHA C S.Optimality Conditions in Convex Optimization Revisited[J].Optimization Letters,2013,7(2):221-229.
|