[1] MOHAMAD A A.Lattice Boltzmann Method[M].London:Spring,2011:87.
[2]杨祖华,张大凯,龙超云,等.数值求解对流方程的一族三阶精度差分格式[J].西南大学学报(自然科学版),2009,31(5):6-12.
[3] 胡敏.混合对流方程等价奇异积分方程的Galerkin数值解法[J].攀枝花学院学报,2014,31(6):106-108.
[4] 侯波,葛永斌.求解一维对流方程的高精度紧致差分格式[J].应用数学,2019,32(3):635-642.
[5] 陈鼎豪,郑文丽,王骥,等.简化一维水质模型在突发水污染事故模拟预测中的应用[J].环境工程学报,2021,15(10):3199-3203.
[6] ZHANG Juan,ZHANG Xindong,YANG Bohui.An Approximation Scheme for the Time Fractional Convection-Diffusion Equation[J].Applied Mathematics and Computation,2018,335:305-312.
[7] LI Changpin,CHEN An.Numerical Methods for Fractional Partial Differential Equations[J].International Journal of Computer Mathematics,2018,95(6/7):1048-1099.
[8] DEHGHAN MEHDI,ABBASZADEH MOSTAFA.A Finite Element Method for the Numerical Solution of Rayleigh-Stokes Problem for a Heated Generalized Second Grade Fluid with Fractional Derivatives[J].Engineering with Computers,2017,33(3):587-605.
[9] OUEDJEDI YAMINA,ROUGIREL ARNAUD,BENMERIEM KHALED.Galerkin Method for Time Fractional Semilinear Equations[J].Fractional Calculus and Applied Analysis,2021,24(3):755-774.
[10] DAI Houping,ZHENG Zhoushun,TAN Wei.Lattice Boltzmann Model for the Riesz Space Fractional Reaction-Diffusion[J].Thermal Science,2018,22(4):1831-1843.
[11] CHAABANE RAOUDHA,D'ORAZIO ANNUNZIATA,JEMNI ABDELMAJID,et al.Convection Inside Nanofluid Cavity with Mixed Partially Boundary Conditions[J].Energies,2021,14(20):6448.
[12] 陈雪娟,陈景华.非线性空间分数阶Fisher方程的数值解法[J].厦门大学学报(自然科学版),2016,55(3):360-365.
|