曹邦兴
CAO Bangxing
摘要:
针对传统三次指数平滑法预测模型中平滑系数固定不变、难以跟踪时间序列随时间变化的因素、无法反应不同时间段历史数据对预测结果的影响等缺点,提出了一种改进的动态三次指数平滑法.该方法通过误差平方、最小原则和地毯式搜索算法来获得动态调整的平滑因子,对波动范围较大且呈非线性变化规律的数据有很强的适应性.将自适应动态三次指数平滑法与SARIMA模型、三次指数平滑法进行对比,由铁路旅客发送量的仿真实例分析结果可知,自适应动态三次指数平滑法能更好地适应时间序列的变化趋势,具有良好的预测精度.