ZHANG Shengui. Periodic Solution for a Class of Hamiltonian Systems on Time Scales[J]. Journal of Jishou University(Natural Sciences Edition), DOI: 10.3969/j.cnki.jdxb.2016.04.001.
[1] BOHNER MARTIN,PETERSON ALLAN.Dynamic Equations on Time Scales:An Introduction with Applications[M].Boston:Birkhuser,2001:35-38.
[2] BOHNER MARTIN,PETERSON ALLAN.Advances in Dynamic Equations on Time Scales[M].Boston:Birkhuser,2003:1-75.
[3] ZHOU Jianwen,LI Yongkun,WANG Yanning.Variational Approach to a Class of Nonautonomous Second-Order Systems on Time Scales with Impulsive Effects[J].Taiwanese Journal of Mathematics,2013,17(5):1 575-1 596.
[4] ZHOU Jianwen,LI Yongkun.Variational Approach to a Class of p-Laplacian Systems on Time Scales[J].Advances in Difference Equations,2013(1):1-16.
[5] SU Youhui,LI Wantong.Periodic Solution of Second-Order Hamiltonian Systems with a Change Sign Potential on Time Scales[J].Discrete Dynamics in Nature and Society,2009,13:1-17.
[6] SU Youhui,LI Wantong.Periodic Solution for Non-Autonomous Second Order Hamiltonian Systems on Time Scales[J].Dynamic Systems and Applications,2009,18:621-636.
[7] SU Youhui,FENG Zhaosheng.A Nonautonomous Hamiltonian System on Time Scales[J].Nonlinear Anal,2012,75(10):4 126-4 136.
[8] ZHOU Jianwen,LI Yongkun.Variational Approach to a Class of Second Order Hamiltonian Systems on Time Scales[J].Acta Applicandae Mathematicae,2012,117(1):47-69.
[9] LI Yongkun,ZHOU Jianwen.Existence of Solutions for a Class of Damped Vibration Problems on Time Scales[J].Advances in Difference Equations,2010,27(1):1-27.
[10] 张申贵.测度链上次线性二阶Hamilton系统周期解的存在性[J].吉首大学学报(自然科学版),2014,35(5):1-5.
[11] MAWHIN JEAN,WILLEM MICHEL.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.