[1] MIGUEL A G OBERNA,MARCO ANTONIO LPEZ-CERDÁ,et al.New Farkas-Type Constraint Qualifications in Convex Infinite Programming[J].ESAIM Control Optimisation and Calculus of Variations,2007,13(3):580-597.[2] D H FANG,LI C,KUNG FU NG.Constraint Qualifications for Extended Farkas’s Lemmas and Lagrangian Dualities in Convex Infinite Programming[J].SIAM Journal on Optimization,2009,20(3):1 311-1 332.[3] RADU IOAN BO塃,GERT WANKA.Farkas-Type Results with Conjugate Functions[J].SIAM J. Optim.,2005,15(2):540-554.[4] CHONG LI,KUNG FU NG,TING KEI PONG.The SECQ,Linear Regularity and the Strong Chip for an Infinite System of Closed Convex Sets in Normed Linear Spaces[J].SIAM Journal on Optimization,2007,18(2):643-665.[5] C LI,K F NG,T K PONG.Constraint Qualifications for Convex Inequality Systems with Applications in Constrained Optimization[J].SIAM Journal on Optimization,2008,19(1):163-187.[6] 姚元金.(F,α,ρ,d)-凸性下的非光滑多目标分式规划问题的对偶[J].湖北民族学院学报:自然科学版,2014,32(2):124-127.[7] RADU IOAN BO塃,SORIN-MIHAI GRAD,GERT WANKA.A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Infinite Dimensional Spaces[J].Mathematische Nachrichten,2008,281(8):1 088-1 107.[8] B LEMAIRE.Application of a Subdifferential of a Convex Composite Functional to Optimal Control in Variational Inequalities[M]∥Nondifferentiable Optimization:Motivations and Applications.Berlin:Springer,1985:103-117.[9] ZHOU Yuying,LI Gang.The Toland-Fenchel-Lagrange Duality of DC Programs for Composite Convex Functions[J].Numerical Algebra,2014,4(1):9-23.[10] FITZPATRICK S P,SIMONS S.The Conjugates,Compositions and Marginals of Convex Functions[J].J. Convex Anal.,2001,8:423-446.[11] C ZALINESCU.Convex Analysis in General Vector Spaces[M].River Edge,New Jersey:World Scientific,2002.