journal6 ›› 2013, Vol. 34 ›› Issue (5): 60-65.DOI: 10.3969/j.issn.1007-2985.2013.05.015
罗轶
LUO Yi
摘要:实时准确的短时交通流预测是智能交通系统中实现交通控制和诱导的关键技术之一.首先,采用饱和关联维数法和互信息量法对交通流时间序列的嵌入维数和延迟时间进行计算,并根据计算结果对交通流时间序列进行相空间重构;然后,采用wolf方法计算其最大Lyapunov指数,并对其进行功率谱分析,结果表明,交通流时间序列具有噪声;最后,分别采用基于BP神经网络和RBF神经网络的预测模型对交通流时间序列进行预测,结果表明,2种模型对短时交通流均能较好预测,但后者的预测精度较高,预测速度较快.嵌入维数;延迟时间;相空间重构;BP神经网络;RBF神经网络