[1] ANDERSON D D,CAMILLO V.Semigroups and Rings Whose Zero Products Commute [J].Comm. Algebra,1999,27(6):2 847-2 852.[2] 〖JP2〗ARMENDARIZ E P.A Note on Extensions of Baer and p.p.-Rings [J].J. Austral. Math. Soc.,1974,18:470-473.〖JP〗[3] CAMILLO V,NIELSEN P.McCoy Rings and Zero-Divisors [J].J. Pure Appl. Algebra,2008,212:599-615.[4] COHN P M.Reversible Rings [J].Bull. London Math. Soc.,1999,31:641-648.[5] GILMER R,GRAMS A,PARKER T.Zero Divisors in Power Series [J].J. Math.,1973,278/279:145-164.[6] HABEB J M.A Note on Zero Commutative and Duo Rings [J].Math. J. Okayama Univ.,1990,32:73-76.[7] HONG C Y,KIM N K,KWAK T K,et al.Extensions of Zip Rings [J].J. Pure Appl. Algebra,2005,195:231-242.[8] HUH C,LEE Y,SMOKTUNOWICZ A.Armendariz Rings and Semicommutative Rings [J].Comm. Algebra,2002,30(2):751-761.[9] KIM N K,LEE Y.Armendariz Rings and Reduced Rings [J].J. Algebra,2000,223:477-488.[10] KIM N K,LEE Y.Extensions of Reversible Rings [J].J. Pure Appl. Algebra,2003,185:207-223.[11] KREMPA J,NIEWIECZERZAL D.Rings in Which Annihilators are Ideals and Their Application to Semi-Group Rings [J].Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.,1977,25(9):851-856.[12] LEMBEK J.On the Representation of Modules By Sheaves of Factor Modules [J].Canad. Math. Bull.,1971,14(3):359-368.[13] MARKS G.Reversible and Symmetric Rings [J].J. Pure Appl. Algebra,2002,174:311-318.[14] NASR-ISFAHANI A R,MOUSSAVI A.Ore Extensions of Skem Armendariz Rings [J].Comm. Algebra,2008,36:508-522.[15] REGE M B,CHHAWCHHARIA S.Armendariz Rings [J].Proc. Japan Acad.,1997,73(A):14-17.[16] SHIN G.Prime Ideals and Sheaf Representation of a Pseudo Symmetric Rings [J].Trans. Amer. Math. Soc.,1973,184:43-60. |