摘要:引入一种新的正线性算子并研究它对于无界函数的同时逼近.设f∈Cβ[0,∞),r∈N,f(x)在[0,∞)存在r阶导数,则limn∞M(r)n,α(f(t),x)=f(r)(x);若f(r)(x)∈C(a-η,b+η)(η>0),则M(r)n,α(f,x)f(r)(x)在x∈[a,b]一致成立.设f∈Cβ[0,∞),f(x)在[0,∞)上存在r+2阶导数,则limn∞n[M(r)n,α(f,x)-f(r)(x)]=α[r(r+1)f(r)(x)+(2(r+1)x+r)f(r+1)(x)+x(1+x)f(r+2)(x)];若f(r+2)(x)∈Ca-η,b+η)(η>0),则上式在[a,b]一致成立.