摘要:左拟对偶双边模 SMR 可以被刻划成MR 的任意子模K 和SS 的任意左理想L 分别是rM lS (K ) 和 lS rM( L ) 的一个直和项.对一个左拟对偶双边模SMR, 有以下结论: ( 1) SM 为Kasch模; ( 2) rMlS ( Soc( MR ) ) = Soc(MR ) , lS rM ( Soc( SS) ) = Soc( SS) ;( 3) lS ( Soc(MR ) ) J ( S) , rM ( Soc( SS) ) Rad(MR ) ; ( 4) 若 MR 为 CS- 模,则 Soc( MR ) eMR ; ( 5) 若 MR 是非M - 奇异的,则M 是半单的; ( 6) 若 MR 在[ M] 中投射且 MR 半单,则 M 是非M - 奇异模.并且还得出, 若 R 是左对偶环或左拟对偶环,则R 是半单环当且仅当R 非奇异.