journal6 ›› 2001, Vol. 22 ›› Issue (4): 83-85.

• 科研简报 • 上一篇    下一篇

q - 覆盖及其空间

  

  1. 邯郸师范专科学校数学系, 河北 邯郸 056004)
  • 出版日期:2001-12-15 发布日期:2013-01-05
  • 作者简介:苏发慧( 1964- ) ,男, 河北省磁县人,邯郸师范专科学校讲师,理学硕士, 主要从事拓扑和群论研究.

Q- Covers and Related Spaces

  1. (Handan Normal College, Handan 056004, Hebei China)
  • Online:2001-12-15 Published:2013-01-05

摘要:利用 q - 开集定义了 Qi( #em/em# = 0, 1, 2, 3, 4) 空间, 讨论了它们的性质及 Qi 空间同 Ti( i = 0, 1, 2, 3, 4) 空间的关系.给出了, q- 覆盖的定义,即拓扑空间 Xq- 开集簇{Aα | α∈I } 称为 q- 覆盖, 当且仅当∪α∈IAα = X .继而定义了一种新的紧致空间——Q- 紧致空间, 讨论它的性质及 Q - 紧空间同 Qi 空间的关系, 得到一些性质.

关键词: q - 覆盖, Q - 紧致空间, Qi( i = 0, 1, 2, 3, 4) 空间

Abstract: Using q- open sets, the auther gives the definition to Qi ( #em/em#= 0, 1, 2, 3, 4) spaces and discuss their characters, and their relationship wi th Ti ( #em/em#= 0, 1, 2, 3, 4) spaces. Topological space X to q- open sets Mani fold { Aα|α∈I } is called q- cover,when only ∪α∈IAα = X . The auther also defines a new compact space: Q- compact space, and discusses the characters of Q- compact space and the relations between Q- compact space and Qi- space thus several conclusions are drawn.

Key words: q- cover, Q- compact space, Qi ( i= 0, 1, 2, 3, 4) space