[1] HARDY G H.Note on a Theorem of Hilbert Concerning Series of Positive Term [J].Proc. London Math. Soc.,1925,23(2):XLV-XLVI.[2] 杨必成.关于一个半离散的Hilbert不等式 [J].汕头大学学报:自然科学版,2011,26(4):5-10.[3] 杨必成.一个半离散的Hilbert不等式 [J].广东第二师范学院学报,2011,31(3):1-7.[4] XIE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality Whose Kernel is a Homogeneous Form of Degree-3 [J].J. Math. Anal. Appl.,2008,339:324-331.[5] 谢子填,曾峥.一个新的零齐次核的Hilbert 型积分不等式 [J].西南大学学报:自然科学版,2011,23(8):137-141.[6] 曾峥,谢子填.一个新的有最佳常数因子的 Hilbert型积分不等式 [J].华南师范大学学报:自然科学版,2010(3):31-33.[7] ZENG Zheng,XIE Zi-tian.A Hilbert’s Inequality with a Best Constant Factor [J].Journal of Inequalities and Applications,2009,Article ID 820176,8 pages,doi:10.1155/2009/820176.[8] XIE Zi-tian,ZHENG Zeng.A Hilbert-Type Inequality with Some Parameters and the Integral in Whole Plane [J].Advances in Pure Mathematics,2011(1):84-89.[9] ZENG Zheng,XIE Zi-tian.On a New Hilbert-Type Integral Inequality with the Integral in Whole Plane [J].Journal of Inequalities and Applications,Article ID 256796,8 pages,2010.doi:10.1155/2010/256796,2010.[10] XIE Zi-tian,ZENG Zheng.The Hilbert-Type Integral Inequality with the System Kernel of-λ Degree Homogeneous Form [J].Kyungpook Mathematical Journal,2010,50(2):297-306.[11] XIE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality with a Non-Homogeneous Form and a Best Constant Factor [J].Advances and Applications in Mathematical Sciens,2010,3(1):61-71.[12] XIE Zi-tian.A New Reverse Hilbert-Type Inequality with a Best Constant Factor [J].J. Math. Anal. Appl.,2008,343:1 154-1 160.[13] 谢子填,杨必成,曾峥.一个新的实齐次核的Hilbert 型积分不等式 [J].吉林大学学报:理学版,2010,48(6):941-945.[14] 谢子填,曾峥.一个实齐次核的Hilbert 型积分不等式及其等价形式 [J].浙江大学学报:理学版,2011,38(3):266-270.[15] XIE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality with the Integral in Whole Plane and Its Equivalent Forms [J].Mathematica Aeterna,2011,1(8):577-586.[16] 谢子填.一个实数齐次核的Hilbert 型积分不等式 [J].吉首大学学报:自然科学版,2011,32(4):26-30.[17] XIE Zi-tian,ZENG Zheng.On a Hilbert-Type Integral Inequality with the Homogeneous Kernel of Real Number-Degree and Its Operator Form [J].Advances and Applications in Mathematical Sciences,2011,10(5):481-490. |