[1] TOKURA Y,NAGAOSA N.Orbital Physics in Transition-Metal Oxides[J].Science,2000,288(5465):462-468.
[2] HASAN M Z,KANE C L.Colloquium:Topological Insulators[J].Reviews of Modern Physics,2010,82(4):3045-3067.
[3] KHANIKAEV ALEXANDER B,MOUSAVI S HOSSEIN,TSE WANG-KONG,et al.Photonic Topological Insulators[J].Nature Materials,2013,12(3):233-239.
[4] ZHANG Xiujuan,WANG Haixiao,LIN Zhikang,et al.Second-Order Topology and Multidimensional Topological Transitions in Sonic Crystals[J].Nature Physics,2019,15(6):582-588.
[5] SCHINDLER FRANK,COOK ASHLEY M,VERGNIORY MAIA G,et al.Higher-Order Topological Insulators[J].Science Advances,2018,4(6):eaat0346.DOI:10.1126/sciadv.aat0346.
[6] CHEN Zeguo,XU Changqing,JAHDALI RASHA AL,et al.Corner States in a Second-Order Acoustic Topological Insulator as Bound States in the Continuum[J].Physical Review B,2019,100(7):075120.DOI:10.1103/PhysRevB.100.075120.
[7] 蒋婧,孔鹏,邓科.二维谷声子晶体拓扑绝缘体的高阶拓扑角态[J].吉首大学学报(自然科学版),2025,46(1):39-44.
[8] QI Yajuan,QIU Chunyin,XIAO Meng,et al.Acoustic Realization of Quadrupole Topological Insulators[J].Physical Review Letters,2020,124(20):206601.DOI:10.1103/PhysRevLett.124.206601.
[9] WIRTH GEORG,LSCHLGER MATTHIAS,HEMMERICH ANDREAS.Evidence for Orbital Superfluidity in the P-Band of a Bipartite Optical Square Lattice[J].Nature Physics,2011,7(2):147-153.
[10] SUN Kai,LIU W VINCENT,HEMMERICH ANDREAS,et al.Topological Semimetal in a Fermionic Optical Lattice[J].Nature Physics,2012,8(1):67-70.
[11] ST-JEAN P,GOBLOT V,GALOPIN E,et al.Lasing in Topological Edge States of a One-Dimensional Lattice[J].Nature Photonics,2017,11(10):651-656.
[12] MILI EVI M,OZAWA T,MONTAMBAUX G,et al.Orbital Edge States in a Photonic Honeycomb Lattice[J].Physical Review Letters,2017,118(10):107403.DOI:10.1103/PhysRevLett.118.107403.
[13] SLOBOZHANYUK ALEXEY P,PODDUBNY ALEXANDER N,MIROSHNICHENKO ANDREY E,et al.Subwavelength Topological Edge States in Optically Resonant Dielectric Structures[J].Physical Review Letters,2015,114(12):123901.DOI:10.1103/PhysRevLett.114.123901.
[14] MILI EVIM,MONTAMBAUX G,OZAWA T,et al.Type-Ⅲ and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene[J].Physical Review X,2019,9(3):031010.DOI:10.1103/PhysRevX.9.031010.
[15] SLOT M R,KEMPKES S N,KNOL E J,et al.p-Band Engineering in Artificial Electronic Lattices[J].Physical Review X,2019,9(1):011009.DOI:10.1103/PhysRevX.9.011009.
[16] GARDENIER T S,VAN DEN BROKE J J,MOES J R,et al.p Orbital Flat Band and Dirac Cone in the Electronic Honeycomb Lattice[J].ACS Nano,2020,14(10):13638-13644.
[17] GAO Feng,XIANG Xiao,PENG Yugui,et al.Orbital Topological Edge States and Phase Transitions in One-Dimensional Acoustic Resonator Chains[J].Nature Communications,2023,14(1):8162.DOI:10.1038/s41467-023-44042-z.
[18] GAO Feng,PENG Yugui,XIANG Xiao,et al.Acoustic Higher-Order Topological Insulators Induced by Orbital-Interactions[J].Advanced Materials,2024,36(23):2312421.DOI:10.1002/adma.202312421.
[19] LI Shifeng,YANG Wenjie,ZHOU Cuiyuyang,et al.綄-Classified Topological Phases and Bound States in the Continuum Induced by Multiple Orbitals[J].Advanced Science,2025,12(10):2409574.DOI:10.1038/s41563-017-0003-3.
[20] MATLACK KATHRYN H,SERRA-GARCIA MARC,PALERMO ANTONIO,et al.Designing Perturbative Metamaterials from Discrete Models[J].Nature Materials,2018,17(4):323-328.
[21] GAO Feng,PENG Yugui,SUN Qili,et al.Topological Acoustics with Orbital-Dependent Gauge Fields[J].Physical Review Applied,2023,20(6):064036.DOI:10.1103/PhysRevApplied.20.064036.
[22] XUE Haoran,YANG Yahui,GAO Fei,et al.Acoustic Higher-Order Topological Insulator on a Kagome Lattice[J].Nature Materials,2019,18(2):108-112.
[23] NI Xiang,WEINER MATTHEW,AL ANDREA.Observation of Higher-Order Topological Acoustic States Protected by Generalized Chiral Symmetry[J].Nature Materials,2019,18(2):113-120.
[24] WEI Qiang,ZHANG Xuewei,DENG Weiyin,et al.Higher-Order Topological Semimetal in Acoustic Crystals[J].Nature Materials,2021,20(6):812-817.
[25] PU Zhenhang,HE Hailong,LUO Licheng,et al.Acoustic Higher-Order Weyl Semimetal with Bound Hinge States in the Continuum[J].Physical Review Letters,2023,130(11):116103.DOI:10.1103/PhysRevLett.130.116103.
|