吉首大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (5): 19-28.DOI: 10.13438/j.cnki.jdzk.2025.05.004

• 数学 • 上一篇    下一篇

基于事件触发的不连续惯性神经网络有限时间同步

曾智源,戴厚平,陈腾   

  1. (吉首大学数学与统计学院,湖南 吉首 416000)
  • 出版日期:2025-09-25 发布日期:2025-11-07
  • 作者简介:曾智源(2001—),男,湖南娄底人,吉首大学数学与统计学院硕士生,主要从事非线性系统控制研究
  • 基金资助:
    国家自然科学基金地区资助项目(12461047)

Finite-Time Synchronization of Discontinuous Inertial Neural Networks Based on Event-Triggered Mechanism 

ZENG Zhiyuan,DAI Houping,CHEN Teng   

  1. (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
  • Online:2025-09-25 Published:2025-11-07

摘要:研究了一类具有不连续激活函数的时滞惯性神经网络的有限时间事件触发控制问题.通过变量替换方法,将二阶惯性神经网络转化为一阶神经网络形式.基于不连续激活函数的特性,采用Filippov解框架定义了神经网络的解,结合有限时间稳定性理论设计了一款新的事件触发控制器,并限制触发间隔以避免芝诺现象发生.在此基础上,推导出网络实现有限时间同步的判别准则,以确保该类二阶惯性神经网络在有限时间内实现同步.

关键词: 事件触发控制, 惯性神经网络, 有限时间同步, 时滞

Abstract: The finite-time event-triggered control problem of a class of time-delay inertial neural networks with discontinuous activation functions is studied.The second-order inertial neural network is transformed into the form of a first-order neural network through the variable substitution method.Based on the characteristics of discontinuous activation functions,the solution of the neural network is defined using the Filippov solution framework.A new event-triggered controller is designed in combination with the finite-time stability theory,and the trigger interval is restricted to avoid the Zeno phenomenon.On this basis,the discrimination criteria for the network to achieve finite-time synchronization are derived to ensure that this type of second-order inertial neural network achieves synchronization within a finite time.

Key words: event triggering mechanism, inertial neural network, finite time synchronization, time-lag

公众号 电子书橱 超星期刊 手机浏览 在线QQ