[1] 郭伟超,赵怀山,李成,等.基于小波包能量谱与主成分分析的轴承故障特征增强诊断方法[J].兵工学报,2019,40(11):2370-2377.
[2] 潘志城,邓军,楚金伟,等.基于小波包的换流变压器振动信号特征分析方法[J].变压器,2020,57(11):21-26.
[3] 袁莉芬,孙业胜,何怡刚,等.基于小波包优选的模拟电路故障特征提取方法[J].电工技术学报,2018,33(1):158-165.
[4] MAHARI ARASH,SEYEDI HERESH.High Impedance Fault Protection in Transmission Lines Using a WPT-Based Algorithm[J].International Journal of Electrical Power & Energy Systems,2015,67:537-545.
[5] ASMAN SAIDATUL HABSAH,AZIZ NUR FADILAH AB,AMIRULDDIN UNGKU ANISA UNGKU,et al.Decision Tree Method for Fault Causes Classification Based on RMS-DWT Analysis in 275 kV Transmission Lines Network[J].Applied Sciences,2021,11(9):4031.DOI:10.3390/app11094031.
[6] 袁圃,毛剑琳,向凤红,等.改进的基于遗传优化BP神经网络的电网故障诊断[J].电力系统及其自动化学报,2017,29(1):118-122.
[7] 宁琦,耿读艳,王晨旭,等.基于多尺度排列熵PSO-SVM的输电线路故障判别[J].电子测量与仪器学报,2019,33(7):173-180.
[8] SABER AHMED,EMAM AHMED,AMER RABAH,et al.Discrete Wavelet Transform and Support Vector Machine-Based Parallel Transmission Line Faults Classification[J].IEEJ Transactions on Electrical and Electronic Engineering,2016,11(1):43-48.
[9] KRISHNANAND K R,DASH P K,NAEEM M H,et al.Detection,Classification,and Location of Faults in Power Transmission Lines[J].International Journal of Electrical Power & Energy Systems,2015,67:76-86.
[10] 张宇博,郝治国,林泽暄,等.基于深度字典学习的输电线路故障分类方法[J].电力自动化设备,2022,42(11):159-166.
[11] 靳志杰,霍志红,许昌,等.基于特征选择和XGBoost的风电机组故障诊断[J].可再生能源,2021,39(3):353-358.
[12] 马东,何毅斌,李铭,等.基于CEEMD-PCA-XGBoost的滚动轴承故障诊断方法[J].机电工程,2023,40(2):186-194.
[13] 赵洪山,闫西慧,王桂兰,等.应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J].电力系统自动化,2019,43(1):81-86.
[14] 欧阳琦,张倍培,刘晋康,等.基于改进XGBoost的注塑机液压系统故障诊断研究[J].机械设计与制造工程,2023,52(7):78-83.
[15] 陈浩男,高雪莲.基于XGBoost和网格搜索的变压器油中溶解气体含量预测[J].河北师范大学学报(自然科学版),2022,46(6):575-581.
[16] 龚泽威一,饶桐,王钢,等.基于改进粒子群优化XGBoost的变压器故障诊断方法[J].高压电器,2023,59(8):61-69.
[17] 陈明华,刘群英,张家枢,等.基于XGBoost的电力系统暂态稳定预测方法[J].电网技术,2020,44(3):1026-1034.
|