吉首大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (5): 38-43.DOI: 10.13438/j.cnki.jdzk.2021.05.007

• 自动化与电工 • 上一篇    下一篇

管道巡检机器人目标识别与定位检测技术

宋雷震,孙晓东   

  1. (淮南联合大学智能制造学院,安徽 淮南 232038)
  • 出版日期:2021-09-25 发布日期:2022-01-18
  • 作者简介:宋雷震(1980—),男,安徽淮南人,淮南联合大学机电系副教授,工学硕士,主要从事电气自动化研究.
  • 基金资助:
    安徽省高校自然科学研究重点项目(KJ2017A581);安徽省高校优秀青年人才支持计划重点项目(GXYQZD2016555)

Target Recognition and Location Detection Technology of Pipeline Inspection Robot

SONG Leizhen, SUN Xiaodong   

  1. (School of Intelligent Manufacturing, Huainan Union University, Huainan 232038, Anhui China)
  • Online:2021-09-25 Published:2022-01-18

摘要:针对目前管道巡检机器人对管道内部目标淤积物识别精度低的问题,设计了一个基于新的学习率更新策略的改进YOLO模型,该模型采用深度学习卷积网络来进行目标物图像学习训练;针对定位不准确的问题,设计了一个测距定位模型,实现了对目标物测距的精准定位.对新学习率更新策略下的YOLO模型、常数衰减学习率更新策略下的YOLO模型、指数衰减学习率更新策略下的YOLO模型及使用传统梯度下降法的YOLO模型等进行了对比训练测试,结果表明,基于新学习率更新策略下的YOLO模型的目标物检测准确率达到96.1%,测距定位模型的定位误差小于2 cm.

关键词: 管道巡检机器人, 深度学习, 目标检测, 卷积网络, 管道

Abstract: To solve the problem of low accuracy of pipeline inspection robot in identifying target sludge inside pipeline, an improved YOLO model based on a new learning rate updating strategy was is proposed. The model adopteds deep learning convolutional network to conduct target image learning and training. For the problem of inaccurate location, a distance location model is proposed to achieve accurate location of target distance. Comparative training tests were conducted on YOLO model (Model A) under the new learning rate updating strategy, YOLO model (Model B) under the constant attenuated learning rate updating strategy, YOLO model (Model C) under the exponential attenuated learning rate updating strategy, and YOLO model (Model D) using the traditional gradient descent method. The results showed that the improved YOLO model (Model A) achieved 96.1% accuracy of target detection with location error less than 2 cm.

Key words: pipeline inspection robot, deep learning, target detection, convolutional network, pipeline operation

公众号 电子书橱 超星期刊 手机浏览 在线QQ