[1] ZHOU Z, ZHANG Y, CHEN P, et al. Graphene Oxide-Modified Zinc Anode for Rechargeable Aqueous Batteries[J]. Chem. Eng. Sci., 2019, 194: 142-147.
[2] JIN T, LI H, ZHU K, et al. Polyanion-Type Cathode Materials for Sodium-Ion Batteries[J]. Chem. Soc. Rev., 2020, 49(8): 2342-2377.
[3] GREY C P, TARASCON J M. Sustainability and in Situ Monitoring in Battery Development[J]. Nat. Mater., 2016, 16(1): 45-56.
[4] QIU S, XIAO L, SUSHKO M L, et al. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage[J]. Adv. Energy Mater., 2017, 7(17): 1700403-1700413.
[5] CHEN M, CHAO D, LIU J, et al. Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays[J]. Adv. Funct. Mater., 2017, 27(12): 1606232-1606239.
[6] SUN W, WANG F, HOU S, et al. Zn/MnO2 Battery Chemistry with H+ and Zn2+ Coinsertion[J]. J. Am. Chem. Soc., 2017, 139(29): 9775-9778.
[7] TANG B, SHAN L, LIANG S, et al. Issues and Opportunities Facing Aqueous Zinc-Ion Batteries[J]. Energ. Environ. Sci., 2019, 12(11): 3288-3304.
[8] SHEN C, LI X, LI N, et al. Graphene-Boosted, High-Performance Aqueous Zn-Ion Battery[J]. ACS Appl. Mater. Interfaces, 2018, 10(30): 25446-25453.
[9] GONZLEZ M A, TRCOLI R, PAVLOVIC I, et al. Layered Double Hydroxides as a Suitable Substrate to Improve the Efficiency of Zn Anode in Neutral pH Zn-ion Batteries[J]. Electrochem. Commun., 2016, 68: 1-4.
[10] GUO X, ZHOU J, BAI C, et al. Zn/MnO2 Battery Chemistry with Dissolution-Deposition Mechanism[J]. Mater. Today Energy, 2020, 16: 100396-100403.
[11] LIU J, CHEN Z, CHEN S, et al. "Electron/Ion Sponge"-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries[J]. ACS Nano, 2017, 11(7): 6911-6920.
[12] TROCOLI R, LA MANTIA F. An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate[J]. Chem Sus Chem, 2015, 8(3): 481-485.
[13] ZHANG H, LIU Q, FANG Y, et al. Boosting Zn-Ion Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption[J]. Adv. Mater., 2019, 31(44): e1904948.
[14] MA L, CHEN S, LI N, et al. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries[J]. Adv. Mater., 2020, 32(14): e1908121.
[15] ZENG Y, ZHANG X, QIN R, et al. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries[J]. Adv. Mater., 2019, 31(36): e1903675.
[16] LI W, WANG K, ZHOU M, et al. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte[J]. ACS Appl. Mater. Interfaces, 2018, 10(26): 22059-22066.
[17] LIANG P, YI J, LIU X, et al. Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries[J]. Adv. Funct. Mater., 2020, 30(13): 1908528-1908537.
[18] HE P, CHEN Q, YAN M, et al. Building Better Zinc-Ion Batteries: A Materials Perspective[J]. EnergyChem, 2019, 1(3): 100022.
[19] LI C, SHI X, LIANG S, et al. Spatially Homogeneous Copper Foam as Surface Dendrite-Free Host for Zinc Metal Anode[J]. Chem. Eng. J. (Lausanne), 2020, 379: 122248-122256.
[20] LU W, XIE C, ZHANG H, et al. Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries[J]. ChemSusChem, 2018, 11(23): 3996-4006.
[21] WANG A, ZHOU W, HUANG A, et al. Modifying the Zn Anode with Carbon Black Coating and Nanofibrillated Cellulose Binder: A Strategy to Realize Dendrite-Free Zn-MnO2 Batteries[J]. J. Colloid Interface Sci., 2020, 577: 256-264.
[22] SUN K E, HOANG T K, DOAN T N, et al. Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(11): 9681-9687.
[23] HIGASHI S, LEE S W, LEE J S, et al. Avoiding Short Circuits from Zinc Metal Dendrites in Anode by Backside-Plating Configuration[J]. Nat. Commun., 2016, 7: 11801-11806.
[24] CAO Z, ZHUANG P, ZHANG X, et al. Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries[J]. Adv. Energy Mater., 2020, 10(30): 2001599-2001613.
[25] KANG L, CUI M, JIANG F, et al. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries[J]. Adv. Energy Mater., 2018, 8(25): 1801090-1801097.
[26] DENG C, XIE X, HAN J, et al. A Sieve‐Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode[J]. Adv. Funct. Mater., 2020, 30(21): 2000599-2000606.
[27] ZHOU M, GUO S, FANG G, et al. Suppressing by-Product via Stratified Adsorption Effect to Assist Highly Reversible Zinc Anode in aAqueous Electrolyte[J]. J. Energy Chem., 2021, 55: 549-556.
[28] HE H, TONG H, SONG X, et al. Highly Stable Zn Metal Anodes Enabled by Atomic Layer Deposited Al2O3 Coating for Aqueous Zinc-Ion Batteries[J]. J. Mater. Chem. A, 2020, 8(16): 7836-7846.
[29] XIE X, LIANG S, GAO J, et al. Manipulating the Ion-Transfer Kinetics and Interface Stability for High-Performance Zinc Metal Anodes[J]. Energ. Environ. Sci., 2020, 13(2): 503-510.
[30] ZHAO K, WANG C, YU Y, et al. Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode[J]. Adv. Mater. Interfaces, 2018, 5(16): 1800848-1800854.
[31] ZHANG Q, LUAN J, HUANG X, et al. Revealing the Role of Crystal Orientation of Protective Layers for Stable Zinc Anode[J]. Nat. Commun., 2020, 11(1): 3961-3967.
|