journal6 ›› 2014, Vol. 35 ›› Issue (4): 23-26.DOI: 10.3969/j.issn.1007-2985.2014.04.006

• 数学 • 上一篇    下一篇

变系数耦合非线性薛定谔方程的怪波解

刘慧   

  1. (华北电力大学数理学院,北京 102206)
  • 出版日期:2014-07-25 发布日期:2014-07-21
  • 作者简介:刘慧(1989-),女,山西吕梁人,华北电力大学数理学院硕士研究生,主要从事偏微分方程研究.
  • 基金资助:

    国家自然科学基金青年项目(11301179)

Rogue Wave in Coupled Nonlinear Schrdinger Equations with Variable Coefficients

 LIU  Hui   

  1. (Department of Mathematical and Physical Sciences,North China Electric Power University,Beijing 102206,China)
  • Online:2014-07-25 Published:2014-07-21

摘要:首先通过规范变换建立了该方程与标准的耦合非线性薛定谔方程的联系;进而运用达布变换求出标准的耦合非线性薛定谔方程的怪波解,得到变系数耦合非线性薛定谔方程的怪波解;最后讨论了超格势阱影响下的耦合非线性薛定谔方程的怪波解的动力学行为.

关键词: 变系数可积系统, 耦合薛定谔方程, 达布变换, 怪波解

Abstract: Firstly,the special Schrdinger equations are connected to the classical coupled nonlinear Schrdinger equations by a gauge transformation.Next,rogue wave solutions of the classical coupled nonlinear Schrdinger equations are obtained through Darboux transformation.Therefore,we can get the rogue wave solutions of the coupled nonlinear Schrdinger equations with variable coefficients.Finally,the dynamic behavior of the coupled nonlinear Schrdinger equations with variable coefficients under the influence of the super-lattice potentials is discussed.

Key words: integrable system with variable coefficients, coupled nonlinear Schrdinger equations, Darboux transformation, rogue wave solutions

公众号 电子书橱 超星期刊 手机浏览 在线QQ