journal6 ›› 2013, Vol. 34 ›› Issue (4): 62-66.DOI: 10.3969/j.issn.1007-2985.2013.03.014

• 信息与通信 • 上一篇    下一篇

CVE漏洞分类框架下的SVM学习模型构建

  

  1. (吉首大学信息科学与工程学院,湖南 吉首 416000)
  • 出版日期:2013-07-25 发布日期:2013-07-18
  • 作者简介:彭华(1980-),男,湖南吉首人,吉首大学信息科学与工程学院讲师,硕士,主要从事网络安全、嵌入式系统研究.
  • 基金资助:

    湖南省科技厅科技计划资助项目(2011FJ3209);湖南省教育厅一般科学研究资助项目(11C1025)

Construction of a SVM Learning Model in the Categorization Framework for CVE

  1.   (College of Information Science and Engineering,Jishou University,Jishou,416000,Hunan China)
  • Online:2013-07-25 Published:2013-07-18

摘要:在CVE漏洞分类框架中,构建了基于支持向量机的学习模型,实现了根据不同的分类特征对CVE进行分类.

关键词: 支持向量机(SVM), 公共漏洞和暴露(CVE), 分类特征, 分类准确性

Abstract: In the categorization framework for CVE,this paper designs and constructs a learning model based on SVM,so that it can categorize the CVE according to the different taxonomic features.In the process of constructing a learning model based on SVM,first of all,the training data is generated according to the different taxonomic features in the several vulnerability databases,then a data fusion and cleansing process are designed to eliminate the inconsistencies of data,and finally the n-fold cross-validation method is used to evaluate the effect of the model.The learning model has been verified to have better performance of CVE classification.

Key words: support vector machine (SVM), common vulnerabilities and exposures (CVE), taxonomic feature,classification accuracy

公众号 电子书橱 超星期刊 手机浏览 在线QQ