[1] MAHLER K.Zur Approximation Algebraischer Zahler I:ber den Grssten Primteiler Binrer Formen [J].Math. Ann.,1933,107:691-730.[2] GEL’FOND A O.Sur la Divisibilité de la Différence des Puissances de Deux Nombres Entiers par une Puissance d’un Idéal Premier [J].Mat. Sb.,1940,7:7-25.[3] TERAI N.The Diophantine Equation ax+by=cz [J].Proc. Japan Acad.,1994,70A:22-26.[4] CAO Zhen-fu.A Note on the Diophantine Equation ax+by=cz [J].Acta Arith.,1999,91:85-93.[5] LE Mao-hua.A Conjecture Concerning the Exponential Diophantine Equation ax+by=cz [J].Acta Arith.,2003,106:345-353.[6] LE Mao-hua.On the Diophantine Equation ax+by=cz [J].J. Changchun Teachers’ College Ser. Nat. Sci.,1985,2:50-62.[7] GUY R K.Unsolved Problems in Number Theory [M].Third Edition.New York:Springer Verlag,2004.[8] CAO Zhen-fu,DONG Xiao-lei.An Application of a Lower Bound for Linear Forms in Two Logarithms to the Terai-Jes′manowicz Conjecture [J].Acta Arith.,2003,110:153-164.[9] LE Mao-hua.A Conjecture Concerning the Exponential Diophantine Equation ax+by=cz [J].Acta Math. Sinica:English Series,2005,21:943-948.[10] LE Mao-hua.An Open Problem Concerning the Diophantine Equation ax+by=cz [J].Publ. Math. Debrecen,2006,68:283-295.[11] LE Mao-hua.On the Exponential Diophantine Equation (m3-3m)x+(3m2-1)y=(m2+1)z [J].Publ. Math. Debrecen,2001,58:461-466.[12] BUGEAUD Y.Linear Forms in p-Adic Logarithms and the Diophantine Equation (xn-1)/(x-1)=yq [J].Math. Proc. Camb. Philos. Soc.,1999,127:373-381. |