journal6 ›› 2010, Vol. 31 ›› Issue (1): 4-6.

• 数学 • 上一篇    下一篇

一些特殊结构的布尔矩阵行空间基数

  

  1. (1.湛江师范学院学生处,广东 湛江524048;2.湛江师范学院数学与计算科学学院,广东 湛江524048)
  • 出版日期:2010-01-25 发布日期:2012-04-19

On the Cardinalities of Row Space of Some Special Boolean Matrices

  1. (1.Student Affair Office,Zhanjiang Normal University,Zhanjiang 524048,Guangdong China;2.Mathematics and Computational Science School,Zhanjiang Normal University,Zhanjiang 524048,Guangdong China)
  • Online:2010-01-25 Published:2012-04-19
  • About author:ZHONG Li-ping(1963-),female,was born in Meizhou City,Guangdong Province,associate professor of Zhanjiang Normal University,M.S.D;research area is algebra theory.
  • Supported by:

    Zhanjiang Normal University Science Foundation (L0701)

摘要:设Bm×n是所有m×n布尔矩阵的集合,R(A)为A∈Bn的行空间,|R(A)|表示行空间R(A)的基数,m,n是正整数,k为非负整数.证明了如下3个结果:(1) 设A∈Bm×n,m,(ⅰ) 如果A是幂等矩阵,即A2=A,那么|R(Am)|=|R(A)| ;(ⅱ) 如果A是对合矩阵,即A2=I,那么当m是奇数时,|R(Am)|=|R(A)|,当m是偶数时|R(A)|=2n.(2) 设A∈Bm×n,A含1的元素个数为k,0≤k≤min{m,n},且A的每行每列元素中1的元素个数最多为1,那么|R(A)|=2k.(3) 若A∈Bm×n是形如A=(O OO A1)的分块矩阵,A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,则|R(A)|=k+1.

关键词: 布尔矩阵, 行空间, 行空间基数, 置换矩阵

Abstract: Let Bm×n  be the set of all m×n Boolean matrices;R(A) denote the row space of A∈Bn,|R(A)| denote the cardinality of R(A),m,n  be positive integers,and k be non negative integers.In this paper,we prove the following three results:(1) let A∈Bn×n,m,(ⅰ) if A  is the idempotent matrix,i.e.,A2=A,then |R(Am)|=|R(A)|;(ⅱ) if A  is the involutory  matrix,i.e.,A2=I,then |R(Am)|=|R(A)|  when m is an odd number or |R(A)|=2n when m is an even number;(2) let  A∈Bm×nbe k of  the numbers  of  1,0≤k≤min{m,n},and each row and column is at most one of the numbers of 1 in A,then |R(A)|=2k; (3) let A∈Bn×n be the partitioned matrix as A=(O OO A1),A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,then |R(A)|=k+1.

Key words: Boolean matrix, row space, cardinality of a row space, permutation matrix

公众号 电子书橱 超星期刊 手机浏览 在线QQ