[1] VAN LEER B.Towards the Ultimate Conservative Difference Scheme II,Monotonicity and Conservation Combined in a Second Order Scheme [J].J. Com. Phys.,1974,14:361-370.[2] VAN LEER B.Towards the Ultimate Conservative Difference Scheme III,Upstream-Centered and Conservation Finite Difference Schemes for Ideal Compressible Flow [J].J. Com. Phys.,1977,23:263.[3] VAN LEER B.Towards the Ultimate Conservative Difference Scheme IV,a New Approach to Numerical Convection [J].J. Com. Phys.,1997,23:276.[4] VAN LEER B.Towards the Ultimate Conservative Difference Scheme V,a Second Order Sequel to Godunov’s Method [J].J. Com. Phys.,1979,32:101.[5] BALSARA D,SHU C W.Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy [J].J. Com. Phys.,2001,160:405-45.[6] SHU C W.Essentially Non-Oscillatory Schemes and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws [A].COCKBURN B,JOHNSON C,SHU C W,et al.Advanced Numerical Approximation of Nonlinear Hyperbolic Equations Lecture Notes in Mathematics [C].Springer,1998,1 697:325-432.[7] JIANG G,SHU C W.Efficient Implementation of Weighted ENO Schemes [J].J. Com. Phys.,1996,126:202-228.[8] COLELLA P,WOODAWARD P R.The Piecewise Parabolic Method(PPM) for Gas-Dynamics Simulations [J].J. Com. Phys.,1984,54:174.[9] HARTEN A,OSHER S.Uniformly High Order Accurate Essentially Non-Oscillatory Scheme [J].I SIAM J. Numer. Ana.,1987,24:279-309.[10] HARTEN A,ENGQUIST B,OSHE S,et al.Uniformly High Order Essentially Non-Oscillatory Schemes Ⅲ [J].J. Com. Phys.,1987,71:231-303.[11] HU C,SHU C W.Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes [J].J. Com. Phys.,1999,150:97-127.[12] LIU X D,OSHER S,CHAN T.Weighted Essentially Non-Oscillatory Schemes [J].J. Com. Phys.,1994,115:200-212. |