[ 1] ?? SIEGMAN A E. New Development in Laser Resonators [ C] . Proc. SPIE, Optical Resonators, 1990. 2- 20.[ 2] ?? SIEGMAN A E. Defining the Effective Radius of Curvature for a Nonideal Beam [ J] . IEEE J. Quant. Electron. , 1991, QE- 27( 5) :1 146- 1 148.[ 3] ?? BELANGER P A. Beam Propagation and ABCD Ray Matrices [ J] . Opt. Lett. , 1991, 16( 4) : 196- 198.[ 4] ?? KRIVO??LYKOV S G. Quantum- Theoretical Formalism for Inhomogeneous Graded- Index Waveguides [M] . Berlin: Akademie VerlagGmbH, 1994.[ 5] ?? KURATSUJI H, KAKIGI S. Maxwell- Schr??dinger Equation for Polarized Light and Evolution of the Stokes Parameters [ J] . Phys.Rev. Lett. , 1998, 80( 9) : 1 888- 1 891.[ 6] ?? GLOGE D, MARCUSE D. Formal Quantum Theory of Light Ray [ J] . J. Opt. Soc. Am. , 1969, 59( 12) : 1 629- 1 631.[ 7] ?? LIU TCY, GUO H,HU W, et al. A Schr??dinger Formulation for Laser Beam Propagation [ C] . SPIE, 1999. 75- 79.[ 8] ?? LIU TCY, GUO H,HU W, et al. A Schr??dinger Formulation Research for Paraxial Light Beam Propagation and Its Application to thePropagation Through Nonlinear Square Law Media [ J] . Chinese Physics Letter, 2000, 17( 10) : 734- 736.[ 9] ?? LIY TCY, GUO H, XQ FU, et al. Maxwell- Schr??dinger Equation for X- Ray Laser Propagation and Interferometry Measurement ofPlasma Electron Density [ J] . Chinese Physics Letter, 2001, 18( 11) : 1 490- 1 492.[ 10] ?? 刘承宜, 郭?? 弘, 刘?? 勇. 稳态等离子体电子密度的X 光激光干涉测量方法研究[ J] . 强激光与粒子束, 1999, 11( 5) :601- 604.[ 11] ?? 刘承宜, 郭?? 弘, 胡?? 巍, 等. 光束传输的Schr??dinger 形式理论研究[ J] . 中国科学( A 辑) , 2000, 30( 1) : 54- 62.[ 12] ?? 刘承宜, 胡?? 巍, 卢光山, 等. 有效ABCD 系统的衍射积分[ J] . 光学学报, 2000, 21( 12) : 1 280- 1 285.[ 13] ?? 刘承宜, 刘?? 江, 殷建玲, 等. 含时量子系统传播子的ABCD 形式[ J] . 物理学报, 2002, 51( 11) : 2 431- 2 434.[ 14] ?? 刘承宜, 邓冬梅, 胡?? 巍, 等. 复数折射率介质中光束传输的Schr??dinger 形式理论研究[ J] . 物理学报, 2002, 21( 3) : 524- 526.[ 15] ?? 刘承宜, 郭?? 弘, 胡?? 巍, 等. 复数折射率介质中光束传输的Schr??dinger 形式理论[ J] . 中国科学( A 辑) , 2002, 32( 4) :355.[ 16] ?? 田?? 野, 刘承宜, 郭?? 旗, 等. 用信息熵描述非线性光传输的研究[ J] . 光学学报, 2002, 22( 7) : 813.[ 17] ?? 殷建玲, 刘承宜, 刘?? 江, 等. 原子激光传输的有效ABCD 形式[ J] . 物理学报, 2004, 53( 2) : 356- 361.[ 18] ?? SCHIFF L I. Quantum Mechanics( 3rd ) [M] . USA:McGraw- Hill Book Company, 1968.[ 19] ?? SIEGMAN A E. Lasers [M] . Oxford U. Press, Mill Valley, Calif. , 1986.[ 20] ?? LUNEBERG R K. Mathematical Theory of Optics [M] . Berkeley :University of California Press, 1964. 216- 226.[ 21] ?? PORRASM A, MEDINA R. Entropy- Based Definition of Laser Beam Spot Size [ J] . App. Opt. , 1995, 34( 36) : 8 247- 8 251.[ 22] ?? DESAIX M, ANDERSON D, LISAK M. Variational Approach to Collapse of Optical Pulses [ J] . J. Opt. Soc. Am. , 1991, B8( 10) :2 082- 2 086.[ 23] ?? KARLSSON M, ANDERSON D. Super- Gaussian Approximation of the Fundamental Radial Mode in Nonlinear Parabolic- Index Optical Fibers [ J] . J. Opt. Soc. Am. , 1992, B9( 9) : 1 558- 1 562.[ 24] ?? TOVAR A A, CASPERSON L W. Generalized Beam Matrices: Gaussian Beam Propagation in Misaligned Complex Optical Systems[ J] . J. Opt. Soc. Am. ( A) , 1995, 12( 7) : 1 522- 1 533.[ 25] ?? PORRAS M A, AIDA J, BERNABEU E. Complex Beam Parameter and ABCD Law for Non- Gaussian and Nonspherical Light Beams[ J] . Applied Optics, 1992, 31( 30) : 6 389- 6 420.[ 26] ?? COLLINS S A JR. Lens- System Diffraction Integral Written in Terms ofMatrix Optics [ J] . J. Opt. Soc. Am. , 1970, 60( 9) : 1 168-1 171.[ 27] ?? NAZARATHY M, SHAMIR J. First- Order Optics, a Canonical Operator Representation: Lossless Systems [ J] . J. Opt. Soc. Am. ,1982, 72( 3) : 356- 364.[ 28] ?? AGRAWAL G P. Nonlinear Fiber Optics( 2nd) [M] . San Diego: Academic Press, 1995. 50- 54. |