journal6 ›› 2003, Vol. 24 ›› Issue (4): 7-11.

• 物理与电子 • 上一篇    下一篇

基于HAAR小波和BP神经网络的非线性电路故障诊断

  

  1. (湖南大学电气与信息学院,湖南 长沙 410082)
  • 出版日期:2003-12-15 发布日期:2012-11-06

Research on Method of Nonlinear Analog-Circuit Fault Diagnosis Based on HAAR Wavelet And BPNN

  1. (College of Electrical and Information Engineering,Hunan University,Changsha 410082,Hunan China)
  • Online:2003-12-15 Published:2012-11-06
  • About author:XIE Hong(1964-),male,was born in Changsha,Hunan,lecturer of Hunan University,PHD,research area is intelligent technology of automatic control,neuval network and fault diagnosis.
  • Supported by:

    Supported by National Natural Science Foundation of China(50277010)

摘要:提出了一种基于HAAR小波和BP神经的非线性电路故障诊断方法,该方法采用小波分解作为非线性电路故障信号的预处理器能大大减少神经网络的输入及训练和处理时间.介绍了一种改进的采用动量因子防止局部收敛的BPNN方法后,阐述基于HAAR小波分解提取故障信号中的故障特征的原理.

关键词: HAAR小波变换, 神经网络, 非线性模拟电路, 故障诊断, 预处理器

Abstract: In this paper,a fault diagnosis method based on Haar wavelet and BP neural network for nonlinear analog circuit has been presented.The proposed method by using wavelet decomposition as a preprocessor of nonlinear analog circuit fault signal can drastically reduces the number of inputs and training and processing time of the neural network.After briefly introducing an improved BPNN which adpots momentum factor for preventing local convergency used for nonlinear analog-circuit fault diagnosis,the basic principle based on Haar wavelet decomposition that can extracts the fault feature from fault signal is discussed.

Key words: HAAR wavelet transform, neural network, nonlinear analog-circuit, fault diagnosis, preprocessor

公众号 电子书橱 超星期刊 手机浏览 在线QQ