[ 1] RATAT R. Lintermediaire DesMathematiciens[ Z] . 1916, 23: 150.[ 2] GOORMAGHTIGH R. Lin termediaire Des Mathematiciens[ Z] . 1917, 24: 88.[ 3] SHOREY T N, VAN DER POORTEN A J, TIJDEMAN R, SCHINZEL A. Applications of the Gel fond- baker Method to Diophantine Equations[ A] . Baker A, Masser D W.Transcendence Theory[ C] . London: Academic Press, 1977. 59- 78.[ 4] SHOREY T N. Some Exponential Diophantine Equations [ A] . Raghavan S. Number Theory and Related Topics[ C] . Bombay: TataInsti tute of Fundamental Research, 1988. 217- 229.[ 5] NES TERENKO Y V, SHOREY T N. On an Equation of Goormaghtigh[ J] . Acta Arith. , 1998, 83: 381- 389.[ 6] LE Mao - hua. On the Diophantine Equation ( x3- 1) / ( x - 1) = ( yn- 1) / ( y- 1) [ J] . Trans. Amer. Math. Soc. , 1999, ( 351) :1063- 1074.[ 7] BILU Y, HANROT G, VOUTIER P M. Ex is tence of Primitive Divisors of Lucas and Lehmer Numbers[ J] . J. Reine. Angew. Math. ,to Appear.[ 8] LIDL R, NIEDERREITER H. Finite Fields [M] .MA: Addison- Wesley, Reading, 1983.[ 9] 乐茂华.关于二元二次原型表整数 : 表示式类的复合[ J] . 长春师范学院学报(自然科学版) , 1986, 2( 2) : 3- 12.[ 10] 乐茂华.关于二元二次原型表整数 : Di ophantus 方程 D1 x2- D2 y2= kZ[ J] .长沙铁道学院学报, 1989, 7( 2) : 6- 18.[ 11] LE M H. Some Exponential Diophantine Equations I: The Equation D1x2- D2 y2= k2[ J] . J. Number Theory, 1995, 55( 2) : 209-221.[ 12] VOUTIER P M. Primitive Divisors of Lucas and Lehmer Sequences [ J] . Math. Comp. , 1995, 64: 869- 888.[ 13] 袁平之.广义 Lucas 序列的重复度与不定方程的解[ J] . 高校应用数学学报, 待发表. |