[ 1] CROSS M C , HOHENBERG P C . Pattern Formation Outside of Equilibrium[ J] . Rev.Mod. Phys, 1993, 65: 851.
[ 2] ABLOWITZ M J , KAUP D J , NEWELL A C , SUGUR H. The Inverse Scattering Transform- fourier Analysis for Nonlinear Prob -lems[ J] . Study in Appl. Phys. , 1974, 53: 249.
[ 3] ABLOWITZ M J , CLARKSON P A . Soli tons, Nonlinear Evolution Equations and Inverse Scattering[M] . Cambridge: Cambridge Unversity Press, 1991.
[ 4] ROGERS C, SHADWICK W E. Backlund Tansformations and Their Applicati on[M] . New York: Adademic Press, 1982.
[ 5] KHATER A H, El- kalau wy O H. Two New Classes of Exact Solutions for the KdV Equation Via Backlund Transformation[ J] .Chaos. soli tons and fractal, 1997, 8: 1901.
[ 6] WEISS J, TABOR M , GARNEVADE G. The Painleve Property for Partial Differential Equations[M] . J. Math. Phys. , 1983, 24:522.
[ 7] OLVER P J. Applications of Lie Groups to Differential Equations[M] . Berlin: Springer- Verlag, 1986.
[ 8] HERMAN W, TAKAOKA M J. Solitary Wave Solutions of Nonlinear Evolution and Wave Equations Using a Di rect Method andMac -syma[ J] . J. Phys. A, 1990, 23: 4805.
[ 9] MALFLIET W. Approximate Solution of the Damped Burger s Equations[ J] . J. Phys. A, 1993, 26: 723.
[ 10] FENG X. Reviews on Analytical Aolutions to the KdV- related Equations[ J] . Journal of Jishou University ( Natural Science Edition) , 1998, 19( 2) : 6~ 14.
[ 11] FENG X. Approximate Solution Method for Some (Magnetic) Hydrodynamic Waves by Parameter Differentiation[ J] . Journal ofJishou University ( Natural Science Edition) , 1998, 19( 1) : 1~ 11.
[ 12] FENG X. Eaxt Wave Front Soluti ons to Two Generalized Coupled Nonlinear Physical Equations[ J] . Phys. Lett. A , 1996, 213: 167~ 176.
[ 13] FENG X. Exploratory Approach for Finding Explici t Solutions to nonlinear Physical Models[ J] . In ternati onal Journal of TheoreticalPhysics, 2000, 39: 207~ 222.
[ 14] GOTTWALD G , GRIMSHAW R , MALOMED B A. Stable Two- dimensional Parametric Solitons in Fluid Sys tems[ J] . Phys. Lett.A, 1998, 248: 208.
[ 15] GURSES M , KARASU A. In tegrable KdV Systems: Recursion Operators of Degree Four[ J] . Phys. Lett. A , 1999, 251: 247.
[ 16] HU Jianlan et al. AnalyticTraveling Wave Solu tions of Several Kinds of Nonlinear Equations[ J] . Journal of Jishou Univer si ty ( Natu -ral Science Edi tion) , 1996, 17( 3) : 41~ 45.
[ 17] TIAN B, GAO Y. Exact Solu tions for the Bogoyavlenskii Coupled KdV Equations[ J] . Phys. Lett. A , 1995, 208: 193.
[ 18] MA W X. A New Hierarchy of Liouville Integrable Generalized Hamiltonian Equations and its Reduction[ J] . Chi nese Journal ofComtemporary Mathematics, 1992, 13: 79. |