[1] GYLLENBERG M,YAN P,WANG Y.Limit Cycles for Competitor-Competitor-Mutualist Lotka-Volterra Systems[J].Physica D,2006,221(2):135-145.[2] SONG Xinyu,LI Yongfei.Dynamic Behaviors of the Periodic Predator-Prey Model with Modified Leslie-Gower Holling-Type II Schemes and Impulsive Effect[J].Nonlinear Anal.:Real World Appl.,2008,9(1):64-79.[3] AGGELIS G,VAYENAS D V,TSAGOU V,et al.Prey-Predator Dynamics with Predator Switching Regulated by a Catabolic Repression Control Mode[J].Ecological Modelling,2005,183(4):451-462.[4] AGIZA H N,ELABBASY E M,EL-METWALLY H,ELSADANY A A.Chaotic Dynamics of a Discrete Prey-Predator Model with Holling Type II[J].Nonlinear Anal.:Real World Appl.,2009,10(1):116-129.[5] SEN M,BANERJEE M,MOROZOV A.Bifurcation Analysis of a Ratio-Dependent Prey-Predator Model with the Allee Effect[J].Ecological Complexity,2012,doi.org/10.1016/j.ecocom.2012.01.002[6] ZHANG Zhengqiu,LUO Jianbo.Multiple Periodic Solutions of a Delayed Predator-Prey System with Stage Structure for the Predator[J].Nonlinear Anal.:Real World Appl.,2010,11(5):4 109-4 120.[7] ZHANG Zhengqiu,HOU Zhenting.Existence of Four Positive Periodic Solutions for a Ratio-Dependent Predator-Prey System with Multiple Exploited (or Harvesting) Terms[J].Nonlinear Anal.:Real World Appl.,2010,11(3):1 560-1 571.[8] KO W,RYU K.Coexistence States of a Nonlinear Lotka-Volterra Type Predator-Prey Model with Cross-Diffusion[J].Nonlinear Anal.:Theory,Methods & Applications,2009,71(12):1 109-1 115.[9] FAZLY M,HESAARAKI M.Periodic Solutions for a Discrete Time Predator-Prey System with Monotone Functional Responses[J].Comptes Rendus de l’Académie des Sciences-Series I,2007,345(4):199-202.[10] CHEN Fengde.On a Nonlinear Nonautonomous Predator-Prey Model with Diffusion and Distributed Delay[J].J. Comput. Appl. Math.,2005,180(1):33-49.[11] LIU Zijian,ZHONG Shouming,LIU Xiaoyuan.Permanence and Periodic Solutions for an Impulsive Reaction-Diffusion Food-Chain System with Holling Type III Functional Response[J].J. Franklin Inst.,2011,348(2):277-299.[12] NINDJIN A F,AZIZ-ALAOUI M A,CADIVEL M.Analysis of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes with Time Delay[J].Nonlinear Anal.:Real World Appl.,2006,7(5):1 104-1 118.[13] SCHEFFER M.Fish and Nutrients Interplay Determines Algal Biomass:A Minimal Model[J].Oikos,1991,62:271-282.[14] LI Yongkun,ZHAO Kaihong,YE Yuan.Multiple Positive Periodic Solutions of Species Delay Competition Systems with Harvesting Terms[J].Nonlinear Anal.:Real World Appl.,2011,12(2):1 013-1 022.[15] XU Rui,CHEN Lansun,HAO Feilong.Periodic Solution of a Discrete Time Lotka-Volterra Type Food-Chain Model with Delays[J].Appl. Math. Comput.,2005,171(1):91-103.[16] KAR T K,MISRA S,MUKHOPADHYAY B.A Bioeconomic Model of a Ratio-Dependent Predator-Prey System and Optimal Harvesting[J].J. Appl. Math. Comput.,2006,22(1/2):387-401.[17] BHATTACHARYYA R,MUKHOPADHYAY B.On an Eco-Epidemiological Model with Prey Harvesting and Predator Switching:Local and Global Perspectives[J].Nonlinear Analysis:Real World Applications,2010,11(5):3 824-3 833.[18] CHAKRABORTY K,CHAKRABORTY M,KAR T K.Bifurcation and Control of a Bioeconomic Model of a Prey-Predator System with a Time Delay[J].Nonlinear Anal.:Hybrid Sys.,2011,5(4):613-625.[19] ZHANG Weipeng,ZHU Deming,BI Ping.Multiple Periodic Positive Solutions of a Delayed Discrete Predator-Prey System with Type IV Functional Responses[J].Appl. Math. Lett.,2007,20(10):1 031-1 038.[20] HAQUE M.A Detailed Study of the Beddington-Deangelis Predator-Prey Model[J].Math. Bios.,2011,234(1):1-16.[21] YANG,Yu,CHEN Wencheng.Uniformly Strong Persistence of a Nonlinear Asymptotically Periodic Multispecies Competition Predator-Prey System with General Functional Response[J].Appl. Math. Comput.,2006,183(1):423-426. |