journal6 ›› 2012, Vol. 33 ›› Issue (6): 22-25.DOI: 10.3969/j.issn.1007-2985.2012.06.006

• 数学 • 上一篇    下一篇

I-adic拓扑与希尔伯特basis定理的2个推论

  

  1. (福建船政交通职业技术学院基础部,福建 福州 350007)
  • 出版日期:2012-11-25 发布日期:2013-01-14
  • 作者简介:任芳(1963-),女,福建福州人,福建船政交通职业技术学院基础部讲师,主要从事同调代数与范畴理论研究.

I-Adic Topology and Two Lemmas of Hilbert Basis Theorem

  1. (Basic Courses Department,Fujian Communications Technology College,Fuzhou 350007,Fujian China)
  • Online:2012-11-25 Published:2013-01-14

摘要:首先证明交换环关于I-adic拓扑诱导的完备化环是商环的有限投射极限,其次揭示Abel范畴noetherian对象与正合序列的关系,进而用范畴的方法给出希尔伯特basis定理的推论 ——noetherian环的I-adic拓扑完备化环R也是noetherian环的新证明,之后论证该推论与希尔伯特basis定理的另一推论是等价的.

关键词: I-adic拓扑, 完备化, 形式幂级数环, noetherian环

Abstract: This paper first shows that the completion of a commutative ring induced by I-adic topology is the finite projective limit of its quotient rings.And then the relationship between noetherian objects and exact sequences is given;moreover,a new proof for the lemma of Hilbert basis theorem is presented,which states that:the completion of a noetherian ring induced by I-adic topology is again a noetherian ring.Also,the equivalence of the above lemma and the other lemma of Hilbert basis theorem is investigated.

Key words: I-adic topology, completion, formal power series ring, noetherian ring

公众号 电子书橱 超星期刊 手机浏览 在线QQ