[1] PEREGRINE D H.Long Waves on a Beach[J].Journal of Fluid Mechanics,1967,27(4):815-827.
[2] HIROTA RYOGO.Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons[J].Physical Review Letters,1971,27(18):1192-1194.
[3] ROUATBI ASMA,OMRANI KHALED.Two Conservative Difference Schemes for a Model of Nonlinear Dispersive Equations[J].Chaos,Solitons & Fractals,2017,104:516-530.
[4] CARVAJAL XAVIER,PANTHEE MAHENDRA.On Sharp Global Well-Posedness and Ill-Posedness for a Fifth-Order KdV-BBM Type Equation[J].Journal of Mathematical Analysis and Applications,2019,479(1):688-702.
[5] 王希,傅浈,胡劲松.广义 BBM-KdV 方程的两种孤波解及其守恒律[J].西华大学学报 (自然科学版),2021,40(6):109-112.
[6] 王希,何丽,胡劲松.求解广义BBM-KdV方程的平均隐式守恒差分格式[J].西华大学学报 (自然科学版),2022,41(4):108-112.
[7] 王希,张爽,胡劲松.求解广义BBM-KdV方程的守恒型有限差分方法[J].哈尔滨理工大学学报,2022,27(4):147-153.
[8] 吕秀敏,葛倩,李金.重心插值配点法求解小振幅长波广义BBM-KdV方程[J].山东大学学报(理学版),2024,59(8):67-76.
[9] 何雅玲,王勇,李庆.格子 Boltzmann 方法的理论及应用[M].北京:科学出版社,2009:1-237.
[10] MA Changfeng.A New Lattice Boltzmann Model for KdV-Burgers Equation[J].Chinese Physics Letters,2005,22(9):2313-2315.
[11] 冯颖欣,戴厚平,汪辰,等.扩展Fisher-Kolmogorov方程的格子Boltzmann方法[J].吉首大学学报(自然科学版),2023,44(4):19-30.
[12] FENG Yingxin,DAI Houping,WEI Xuedan.Numerical Solutions to the Sharma-Tasso-Olver Equation Using Lattice Boltzmann Method[J].International Journal for Numerical Methods in Fluids,2023,95(9):1546-1564.
[13] 郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008:1-250.
|