吉首大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (5): 1-4.DOI: 10.13438/j.cnki.jdzk.2025.05.001

• 数学 •    下一篇

高阶线性递推数列通项公式的矩阵方法推导

费明兵,卓泽朋   

  1. (淮北师范大学数学与统计学院,安徽 淮北 235000)
  • 出版日期:2025-09-25 发布日期:2025-11-07
  • 作者简介:费明兵(1986—),男,湖北黄石人,淮北师范大学数学与统计学院讲师,理学博士,主要从事基础数学研究
  • 基金资助:
    安徽省高等学校省级质量工程项目(2021JXTD257,2022JYXM1410)

Derivation of the General Formula of Higher Order Linear Recursive Sequences by Using Matrix Methods

FEI Mingbing,ZHUO Zepeng   

  1. (School of Mathematics and Statistics,Huaibei Normal University,Huaibei 235000,Anhui China)
  • Online:2025-09-25 Published:2025-11-07

摘要:通过引入列向量,将高阶线性递推数列求通项问题转化为方阵求幂问题,进而利用Jordan标准形理论和向量组的矩阵表示理论推导出高阶线性递推数列的通项公式.

关键词: 高阶线性递推数列, 通项, Jordan标准形

Abstract: By introducing column vectors,the problem of finding the general term of a high-order linear recursive sequence is transformed into a problem of finding the power of a square matrix,and then the general term of a high-order linear recursive sequence is obtained by using the theory of Jordan's canonical form with the theory of matrix representation between vectors.

Key words: high order linear recursive sequence, general term, Jordan's canonical form

公众号 电子书橱 超星期刊 手机浏览 在线QQ