journal6 ›› 2008, Vol. 29 ›› Issue (6): 21-24.

• 数学 • 上一篇    下一篇

UV-分解在一类具有锥约束的lower-c2规划中的应用

  

  1. (辽宁师范大学数学学院,辽宁 大连 116029)
  • 出版日期:2008-11-25 发布日期:2012-05-19
  • 作者简介:王炜(1960-),女,辽宁本溪人,辽宁师范大学数学学院教授,博士,主要从事运筹学与控制论研究.

Application of UV-Decomposition Theory to the  Lower-c2Function with the Cone Constrained

  1. (School of Mathematics,Liaoning Normal University,Dalian 116029,China)
  • Online:2008-11-25 Published:2012-05-19

摘要:在非光滑优化中,函数的二阶性质与展开的理论与应用方面的研究是倍受关注的课题.2000年Lemaréchal,Mifflin,Sagastizábal和Oustry等提出的UV-分解理论,给出了非光滑凸函数f在不可微点的二阶性质的新方法.UV-分解理论的基本思想是将Rn分解为2个正交的子空间U和V的直和,使得原函数在U空间上的一阶逼近是线性的,其不光滑特征集中于V空间中,借助于中间函数(U-Lagrange函数),得到函数在切于U空间的某个光滑轨道上的二阶展式.文中主要是将UV-分解理论推广到一类具有锥约束的非凸函数.使用罚函数的方法,讨论了该罚函数的UV-空间分解结构,并得到该罚函数在光滑轨道上的一阶、二阶性质及其展开式.

关键词: 非光滑, 锥约束, UV-空间分解

Abstract: In nonsmooth optimization,the study concerning the theory and application of second-order analysis of nonsmooth function has drawn much attention.Lemaréchal,Mifflin,Sagastizabal and Oustry(2000) introduced the UV-decomposition theory,which opens a way to define a suitable restricted second-order derivative of a convex function f at nondifferentiable point x.The basic idea is to decompose Rn into two orthogonal subspaces U and V depending on x,so that the first approximation of f in U is linear,and f's nonsmoothness near the point is concentrated essentially in V,and obtain second-order expansions.This paper mainly applies the UV-decomposition theory to a series of nonconvex function.Using the method of penalty function,the paper discusses the definition of the UV-decomposition of the penalty function,and the first-order and second-order expansions of the penalty function.

Key words: nonsmooth, cone constrained, uv-decomposition

公众号 电子书橱 超星期刊 手机浏览 在线QQ