[1] HOHENBERG P,KOHN W.Inhomogeneous Electron Gas[J].Physical Review,1964,136(3B):B864.DOI:10.1103/PhysRev.136.B864.
[2] KOHN WALTER,SHAM LU JEU.Self-Consistent Equations Including Exchange and Correlation Effects[J].Physical Review,1965,140(4A):A1133.DOI:10.1103/PhysRev.140.A1133.
[3] SHAO Xuecheng,JIANG Kaili,MI Wenhui,et al.DFTpy:An Efficient and Object-Oriented Platform for Orbital-Free DFT Simulations[J].Wiley Interdisciplinary Reviews:Computational Molecular Science,2021,11(1):e1482.DOI:10.1002/wcms.1482.
[4] CONSTANTIN LUCIAN,FABIANO EDUARDO,DELLA SALA FABIO.Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids[J].The Journal of Physical Chemistry Letters,2018,9(15):4385-4390.
[5] CONSTANTIN LUCIAN,FABIANO EDUARDO,DELLA SALA FABIO.Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory[J].Journal of Chemical Theory and Computation,2019,15(5):3044-3055.
[6] WITT WILLIAM C,BEATRIZ G,DIETERICH JOHANNES M,et al.Orbital-Free Density Functional Theory for Materials Research[J].Journal of Materials Research,2018,33(7):777-795.
[7] TOSCANO GIUSEPPE,STRAUBEL JAKOB,KWIATKOWSKI ALEXANDER,et al.Resonance Shifts and Spill-Out Effects in Self-Consistent Hydrodynamic Nanoplasmonics[J].Nature Communications,2015,6(1):1-11.
[8] LUO Kai,KARASIEV VALENTIN V,TRICKEY S B.A Simple Generalized Gradient Approximation for the Noninteracting Kinetic Energy Density Functional[J].Physical Review B,2018,98(4):041111.DOI:10.1103/PhysRevB.98.041111.
[9] LUO Kai,KARASIEV VALENTIN V,TRICKEY S B.Towards Accurate Orbital-Free Simulations:A Generalized Gradient Approximation for the Noninteracting Free Energy Density Functional[J].Physical Review B,2020,101(7):075116.DOI:10.1103/PhysRevB.101.075116.
[10] LI Wancong,ZHOU Qiang,ZHANG Pu,et al.Direct Electro Plasmonic and Optic Modulation via a Nanoscopic Electron Reservoir[J].Physical Review Letters,2022,128(21):217401.DOI:10.1103/PhysRevLett.128.217401.
[11] CIRAC CRISTIAN,DELLA SALA FABIO.Quantum Hydrodynamic Theory for Plasmonics:Impact of the Electron Density Tail[J].Physical Review B,2016,93(20):205405.DOI:10.1103/PhysRevB.93.205405.
[12] BAGHRAMYAN HENRIKH,DELLA SALA FABIO,CIRAC CRISTIAN.Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics[J].Physical Review X,2021,11(1):011049.DOI:10.1103/PhysRevX.11.011049.
[13] RAZA SREN,STENGER NICOLAS,KADKHODAZADEH SHIMA,et al.Blueshift of the Surface Plasmon Resonance in Silver Nanoparticles Studied with EELS[J].Nanophotonics,2013,2(2):131-138.
[14] YAN Wei.Hydrodynamic Theory for Quantum Plasmonics:Linear-Response Dynamics of the Inhomogeneous Electron Gas[J].Physical Review B,2015,91(11):115416.DOI:10.1103/PhysRevB.91.115416.
[15] CIRAC CRISTIAN.Current-Dependent Potential for Nonlocal Absorption in Quantum Hydrodynamic Theory[J].Physical Review B,2017,95(24):245434.DOI:10.1103/PhysRevB.95.245434.
[16] TANCOGNE-DEJEAN NICOLAS,OLIVEIRA MICAEL J T,ANDRADE XAVIER,et al.Octopus,a Computational Framework for Exploring Light-Driven Phenomena and Quantum Dynamics in Extended and Finite Systems[J].The Journal of Chemical Physics,2020,152(12):124119.DOI:10.1063/1.5142502.
[17] TANCOGNE-DEJEAN NICOLAS,RUBIO ANGEL.Parameter-Free Hybridlike Functional Based on an Extended Hubbard Model:DFT+U+V[J].Physical Review B,2020,102(15):155117.DOI:10.1103/PhysRevB.102.155117.
[18] PAYAMI MAHMOUD.Finite-Size Effects and the Stabilized Spin-Polarized Jellium Model for Metal Clusters[J].The Journal of Chemical Physics,1999,111(18):8344-8349.
[19] PAYAMI MAHMOUD.Volume Change of Bulk Simple Metals and Simple Metal Clusters due to Spin Polarization[J].Journal of Physics:Condensed Matter,2001,13(18):4129.DOI:10.1088/0953-8984/13/18/320.
[20] PAYAMI MAHMOUD.Stabilized Jellium Model and Structural Relaxation Effects on the Fragmentation Energies of Ionized Silver Clusters[J].Canadian Journal of Physics,2004,82(3):239-247.
[21] HOROWITZ CLAUDIO M,PROETTO C R,PITARKE JOS MARA.Exact-Exchange Kohn-Sham Potential,Surface Energy,and Work Function of Jellium Slabs[J].Physical Review B,2008,78(8):085126.DOI:10.1103/PhysRevB.78.085126.
[22] SCHULTE F K.A Theory of Thin Metal Films:Electron Density,Potentials and Work Function[J].Surface Science,1976,55(2):427-444.
[23] LUO Hongjun,HACKBUSCH WOLFGANG,FLAD HEINZ-JRGEN,et al.Fully Self-Consistent Hartree-Fock Calculation of Jellium Slabs:Exact Treatment of the Exchange Operator[J].Physical Review B,2008,78(3):035136.DOI:10.1103/PhysRevB.78.035136.
|