吉首大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (6): 30-35.DOI: 10.13438/j.cnki.jdzk.2021.06.005

• 电工技术 • 上一篇    下一篇

基于LSTM-AdaBoost的城市住宅区负荷预测

李龙祥,彭晨,李军,王雨嫣,鲁荣波   

  1. (1.吉首大学信息科学与工程学院,湖南 吉首 416000;2. 吉首大学数学与统计学院,湖南 吉首 416000;3.怀化学院,湖南 怀化 418008)
  • 出版日期:2021-11-25 发布日期:2022-01-21
  • 通讯作者: 彭晨(1989—),男,广东广州人,吉首大学信息科学与工程学院硕士生导师,博士,主要从事人工智能、神经网络研究.
  • 作者简介:李龙祥(1996—),男,河南驻马店人,硕士研究生,主要从事智能信息、信号处理技术与应用研究
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(62006095);湖南省教育厅优秀青年项目(20B470); 国家级创新创业训练项目(S202010531027)

Load Forecasting of Urban Residential District Based on LSTM-AdaBoost

LI Longxiang, PENG Chen, LI Jun, WANG Yuyan, LU Rongbo   

  1. (1.College of Information Science and Engineering, Jishou University, Jishou 416000, Hunan China; 2. College of Mathematics and Statistics, Jishou University, Jishou 416000, Hunan China;3. Huaihua University, Huaihua 418008, Hunan China) 
  • Online:2021-11-25 Published:2022-01-21

摘要:在智慧城市中,准确的住宅负荷预测是实现电力供需平衡和降低资源浪费的关键.为了提升对城市住宅区负荷预测的精度,构建了一种由长短期记忆网络(LSTM)和集成学习相结合的短期负荷预测模型LSTM-AdaBoost.该模型以露点(空气中的水蒸气凝结成水珠的温度)、历史负荷、周类型等特征作为数据输入;然后将具备时序记忆功能的LSTM网络作为集成学习的基学习器;最后用AdaBoost集成算法对基学习器进行加权组合得到强学习器.实验结果表明,LSTM-AdaBoost集成模型相较于LSTM网络、支持向量机(SVM)和CART决策树等单一预测方法具有更高的预测精度.

关键词: 住宅负荷预测, 长短期记忆网络, 集成学习, AdaBoost

Abstract: In smart cities, accurate residential load forecasting is the key to achieving a balance between power supply and demand and reducing resource waste. In order to improve the accuracy of load forecasting of urban residential districts, a short-term load forecasting model LSTM-AdaBoost, which combines long and short-term memory network (LSTM) and ensemble learning, is proposed. The model uses dew point (the temperature at which water vapor in the air condenses into water droplets), historical load, week type and other characteristics as data input; then the LSTM network with timing memory function is used as the base learner for integrated learning; finally, the ensemble AdaBoost  algorithm performs a weighted combination of the base learner to obtain a strong learner. Experimental results show that the integrated LSTM-AdaBoost model has higher forecast accuracy than single forecasting methods such as LSTM network, support vector machine (SVM) and CART decision tree.

Key words: residential load forecasting, long and short-term memory network, ensemble learning, AdaBoost

公众号 电子书橱 超星期刊 手机浏览 在线QQ