journal6 ›› 2010, Vol. 31 ›› Issue (3): 39-42.
• 计算机 • 上一篇 下一篇
出版日期:
发布日期:
作者简介:
基金资助:
湖南省教育厅重点项目(09JD024);吉首大学校级课题资助(09JD024)
Online:
Published:
摘要:首先概述了支持向量机的发展与应用,指出其在机器学习领域有较大的发展前景.分析了支持向量机的基本算法,进而阐述了基于支持向量机的机器学习模型构造思路.给出了其应用于机器学习模型的核函数和训练算法,最后给出了学习模型的具体分类效果.
关键词: 机器学习, 人工智能, 支持向量机, 模式识别
Abstract: The development of support vector machines (SVM) is firstly summarized.Its application in machine learning has great prospects.The basic SVM algorithm is analyzed,and the ideas of constructing machine learning based on SVM are presented.The kernel function and training algorithm of applying SVM in the machine learning model are put forward.Lastly,the classifying effect of the learning model is shown.
Key words: machine learning, artificial intelligence, support vector machine, pattern recognition
李海, 李春来, 侯德艳. 支持向量机下机器学习模型的分析[J]. journal6, 2010, 31(3): 39-42.
LI Hai, LI Chun-Lai, HOU De-Yan. Analysis of Machine Learning Model Based on Support Vector Machine[J]. journal6, 2010, 31(3): 39-42.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://zkxb.jsu.edu.cn/CN/
https://zkxb.jsu.edu.cn/CN/Y2010/V31/I3/39