journal6 ›› 2015, Vol. 36 ›› Issue (5): 39-44.DOI: 10.3969/j.cnki.jdxb.2015.05.009

• 信息与计算机 • 上一篇    下一篇

基于Split Bregman算法的MRI图像重建参数分析

刘梅,廖柏林   

  1. (1.吉首大学物理机电与工程学院,湖南 吉首 416000 2.吉首大学信息科学与工程学院,湖南 吉首 416000)
  • 出版日期:2015-09-25 发布日期:2015-11-02
  • 作者简介:刘梅(1988—),女,湖北荆州人,吉首大学物理机电与工程学院教师,硕士,主要从事磁共振图像处理、语音信号处理和神经网络研究;廖柏林(1981—),男,湖南衡阳人,吉首大学信息科学与工程学院副教授,博士,主要从事过程控制、机械臂控制和神经网络研究.
  • 基金资助:

    吉首大学校级课题资助项目(15JD013);湖南省教育厅科学研究项目(13C757)

Analysis on MRI Image Parameter Reconstruction Based on Split Bregman Algorithm

 LIU  Mei, LIAO  Bai-Lin   

  1. (1.College of Physics and Electromechanical Engineering,Jishou University,Jishou 416000,Hunan China;2. College of Information Science and Engineering,Jishou University,Jishou 416000,Hunan China)
  • Online:2015-09-25 Published:2015-11-02

摘要:压缩感知理论已应用在MRI成像中,作为压缩感知的非线性重建算法的重要分支,以Split Bregman算法为代表的凸松弛法将信号重建问题转化为凸优化问题求解,其计算效率高.对Split Bregman算法的正则化参数功能和调节机制进行了理论研究,分析了正则化参数对该算法收敛精度和收敛速度的影响.仿真结果表明了3个正则化参数对MRI图像重建效率和精度的影响程度.

关键词: 压缩感知, 磁共振图像重建, 非线性求逆, 凸松弛Split Bregman算法

Abstract: The emerging compressed sensing (CS) theory,which includes the incoherent measurement matrix,sparse representation,and nonlinear signal reconstruction,has been employed in the magnetic resonance imaging (MRI).This paper focuses on Split Bregman algorithm which transforms the problem of convex relaxation to the problem of convex optimization.The main advantages of Split Bregman lie in its high computational efficiency and its capacity to solve multi-regularized inverse problem with high accuracy in MRI reconstruction.The function and tuning mechanism of regularization parameters are analyzed theoretically firstly,and then the influences of tuning the regularization parameters on the convergence accuracy and speed are investigated.In this way,the guidelines are provided for choosing suitable parameters in practical applications.

Key words: compressed sensing, magnetic resonance imaging, nonlinear inversion, convex relaxation Split-Bregman regularization algorithm

公众号 电子书橱 超星期刊 手机浏览 在线QQ