[1] 赵以阁,孙书荣.Sturm-Liouville特征值问题 [J].济南大学学报:自然科学版,2009,23(3):299-301.[2] 陈维松,韩振来.几类微分方程解的渐近性 [J].济南大学学报:自然科学版,2009,23(3):296-298.[3] AGARWAL R P,GRACE S R.Oscillation Theorems for Certain Functional Differential Equations of Higher Order [J].Math. Comput. Modelling,2004,39:1 185-1 194.[4] MENG Fan-wei,XU Run.Oscillation Criteria for Certain Even Order Quasi-Linear Neutral Differential Equations with Deviating Arguments [J].Appl. Math. Comput.,2007,190:458-464.[5] XU Zhi-ting,XIA Yong.Integral Averaging Technique and Oscillation of Certain Even Order Delay Differential Equations [J].J. Math. Anal. Appl.,2004,292:238-246.[6] HAN Zhen-lai,LI Tong-xing,SUN Shu-rong,et al.Remarks on the Paper [Appl. Math. Comput. 207 (2009) 388-396] [J].Applied Mathematics and Computation,2010,215:3 998-4 007. [7] SUN Yuan-gong,MENG Fan-wei.Oscillation of Second-Order Delay Differential Equations with Mixed Nonlinearities [J].Appl. Math. Comput.,2009,207(1):135-139.[8] PHILO CH G.A New Criteria for the Oscillatory and Asymptotic Behavior of Delay Differential Equations [J].Bull. Acad. Pol. Sci. Ser. Sci. Mat.,1981,39:61-64.[9] 李同兴,韩振来,孙书荣.二阶Emden-Fowler中立型时滞微分方程振动性 [J].吉首大学学报:自然科学版,2009,30(1):27-29.[10] 赵以阁,孙书荣.一类三阶非线性中立型时滞差分方程的振动性 [J].北京工商大学学报:自然科学版,2009,27(5):65-67.[11] 曹凤娟,韩振来.具偏差变元p-Laplace微分方程周期解存在性 [J].济南大学学报:自然科学版,2010,24(1):95-98.[12] 李同兴,韩振来.一类具振动系数的二阶中立型Emden-Fowler差分方程的振动准则 [J].济南大学学报:自然科学版,2009,23(4):410-413. |