journal6 ›› 2013, Vol. 34 ›› Issue (6): 47-52.DOI: 10.3969/j.issn.1007-2985.2013.06.013

• 信息与通信 • 上一篇    下一篇

基于自适应特征选择的夜间运动车辆检测算法

朱韶平   

  1. (湖南财政经济学院,湖南 长沙 4101205)
  • 出版日期:2013-11-25 发布日期:2014-01-02
  • 作者简介:朱韶平(1972-),女,湖南双峰人,湖南财政经济学院副教授,硕士,主要从事计算机应用技术、模式识别和图像处理等研究.
  • 基金资助:

    湖南省科技计划资助项目(2012FJ3021);湖南省教育科学“十二五”规划课题资助项目(XJK012CGD022);湖南省普通高等学校教学改革研究资助课题(湘教通【2012】401号544)

Nighttime Motion Vehicle Detection Based on Self-Adaptive Character Choice

 ZHU  Shao-Ping   

  1. (Hunan Uiversity of Finane and Economics,Changsha 410205,China)
  • Online:2013-11-25 Published:2014-01-02

摘要:针对夜间交通环境的特点,提出了基于自适应特征选择的夜间运动车辆检测算法.首先,利用SIFT算法提取夜间运动车辆的形状特征,并融合颜色和纹理特征,得到夜间运动车辆的特征向量;其次,利用Boosting算法和遗传算法以迭代形式获取模糊规则及其权值;然后,采用Boosting算法以加权投票方式自适应选取对检测最有利的特征,从而实现自适应特征选择;最后,对夜间交通场景下3种不同道路情况进行实验.实验结果表明,在遮挡、光照及背景干扰等复杂情况下,该方法可以根据背景信息的不同自适应地选择特征,实现夜间车辆的实时检测,鲁棒性较好,可以满足智能交通系统的实时性和准确性的要求.

关键词: 车辆检测, SIFT特征, Boosting方法, 自适应特征选择

Abstract: According to the characteristics of the traffic environment at night,a method for nighttime motion vehicle detection based on self-adaptive character selection is presented in this paper.Firstly SIFT algorithm is used to extract the shape characteristic of the motion vehicle at night and obtain the feature vector by the integration of color and texture feature.And then Boosting algorithm and Genetic algorithm are used to obtain a set of fuzzy rules and regulations corresponding weights in the form of iterations and achieve self-adaptive feature selection by weighted voting decision to the most favorable characteristics of the detector.Finally the experimental results show that this method can deal well with complex situations at night,such as occlusion,illumination and background interference,maintain real-time vehicle detection in the choice of different self-adaptive characteristics to background information,and achieve the real-time and accuracy requirements of traffic intelligent monitoring system with strong robustness,which are tested in three different nighttime traffic scenarios.

Key words: vehicle detection, SIFT character, Boosting method, self-adaptive character choice

公众号 电子书橱 超星期刊 手机浏览 在线QQ