journal6 ›› 2013, Vol. 34 ›› Issue (1): 28-32.DOI: 10.3969/j.issn.1007-2985.2013.01.008
• 计算机 • 上一篇 下一篇
出版日期:
发布日期:
作者简介:
基金资助:
中央财政支持“高等职业学校提升专业服务能力项目”(580202);电工电子安徽省级示范实验实训中心项目(20101687)
Online:
Published:
摘要:智能交通系统(ITS)是当前研究的热点,而在ITS中的关键技术之一就是交通标志的特征提取技术.针对交通标志的特征提取,提出利用尺度不变特征变换(SIFT)算法提取交通标志的点特征,采取最小距离分类器对特征向量进行分类,并通过Matlab、仿真验证实验结果,结果表明能够较好地检测出交通标志的特征.
关键词: 智能交通系统, 尺度不变特征变换, 交通标志, 特征提取, 最小距离分类器
Abstract: Intelligent transportation system(ITS) is currently a hot research subject,and the key technology in ITS is traffic signs feature extraction technique.This article,focuse on the characteristics of the traffic signs extraction,proposes use of the scale invariant feature transform algorithm to extract point characteristics of the traffic signs and use of minimum distance classifier to classify feature vectors.By Matlab,simulation is used to test the results.The results show that the characteristics of the traffic signs can be better detected.
Key words: intelligent transportation system, scale invariant feature transform, traffic sign, feature matching, minimum distance classifier
江治国, 陈小林. 基于特征匹配的交通标志识别算法[J]. journal6, 2013, 34(1): 28-32.
JIANG Zhi-Guo, CHEN Xiao-Lin. Traffic Sign Recognition Algorithm Based on Feature Matching[J]. journal6, 2013, 34(1): 28-32.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://zkxb.jsu.edu.cn/CN/10.3969/j.issn.1007-2985.2013.01.008
https://zkxb.jsu.edu.cn/CN/Y2013/V34/I1/28