摘要:设n是大于1且适合s(n)=[n/2]的正整数,其中s(n)是n的正规约数和函数;ω(n)是n的不同素因数的个数,p1,p2,…,pω(n)是n的适合p1<p2<…<pω(n)的素因素.证明了:如果2|n,则必有n=2;如果n为奇数且ω(n)≤2,则必有n=3a,其中α是任意的正整数;如果n为奇数且ω(n)=3,则必有p1=3或者p1=5,p2=7以及11≤p3≤31;如果n为奇数且ω(n)=4,则必有p1=3或者p1=5,7≤p2≤13,11≤p3≤17以及13≤p4≤23,上述结果部分地解决了Graham猜想.