journal6 ›› 2000, Vol. 21 ›› Issue (1): 58-62.

• 科研简报 • 上一篇    下一篇

临界拟线性椭圆方程极小能量解的形态

  

  1. (湘潭工学院数学与软件研究所, 湖南 湘潭 411201)
  • 出版日期:2000-03-15 发布日期:2013-01-16
  • 作者简介:曾宪忠( 1964~ ) ,男, 湖南永州县人,讲师, 理学硕士,研究方向: 控制论; 熊之光( 1964~ ) , 男, 湖南湘西人,讲师,理学硕士, 研究方向:计算数学.
  • 基金资助:

    湖南省自然科学基金资助项目( 99JJY2003)

The Shape of the Least Energy Solution of Quasilinear Elliptic Equations

  1. ( Institute of Mathematics and Software, Xiangtan Polytechnic University, Xiangtan 411201, Hunan China)
  • Online:2000-03-15 Published:2013-01-16

摘要:讨论了方程- ?pu= - Div( | Du|p- 2Du)= Q( x ) | u|p*- 2u+ε | u| σ- 1u    x∈Ω   u|∂Ω= 0的极小能量解在ε→0时的形态: 当 ε→0时, 方程极小能量解 uε在测度意义下满足| Duε|pQ-N- ppm  SNp x0, | uε |p*  弱Q-Npm  SNp  x0,其中 Qm= maxx  Q( x ) = Q( x 0) , x0为 x0 的 Dirac函数, Ω 是有界光滑区域.

关键词: 拟线性, 极小能量解, 集中紧原理

Abstract: This paper deals wi th the shape of the least energy solut ion of quasilinear el liptic equations involving criticale xponents- v pu = - Div( | Du|p- 2Du) = Q( x ) | u|p*- 2u+ E | u|R - 1u   x I 8 ,u| 98= 0,where 8 is a bounded domain in RNwith smooth boundary 98, 0< E< K 1, and Ey 0. Q( x ) I C( 8) , RI [ 1, p*) .The fol lowing conclusions are proved:The least energy solution uE of the equat ions satisfies ( after passing to a subse -quence) :| DuE |p   w  Q-N- ppm   SNpDx 0, as Ey 0, in the sense of measure.| uE |p*   w  Q-Npm   SNpD x0, as Ey 0, in the sense of measure.Where Qm= maxx I 8Q( x ) = Q( x 0) , D x 0 be the Dirac mass at x 0, S is the bes t Sobolev cons tant.

Key words: quasilinear, the least energy solution, the concentration- compactness principle

公众号 电子书橱 超星期刊 手机浏览 在线QQ