24 1 () Vol. 24 No.1
2003 3 Jourmal of Jishou University (Natural Science Edition) Mar. 2003

Article ID: 1007- 2985(2003) 01— 0026- 11

Security Issues for Java— Based Agents

LU Chuan-cai
(College of Infomation Science and T echnology, Fuzhou University, Fuzhou 350002, Fujian China)

Abstract: With the popularization of computer networks, there has been a shift proposed in distributed system programming from the remote
procedure call to the remote programming paradiem, to decrease network traffic and improve perfomance. Sofiware agents could be used to
accomplish this task. The use of agents has several advantages and a few disadvantages, ncuding added securty issues. In order to imple-
mert autonomous security of Java agent, the author presents a new module system for Java that improves upon many of the deficiencies of the
Java package system and gives the programmer more control over dynamic linking. Next, the author develops a general agent model and dis-
cusses general securty issues in that model. Finally, the author proposes a practical solution that addresses some of those security issues.
Key words: sofware agents; remote procedure call; dynamic linking; autonomous security

CLC number: TP311 Document code: A

1 Introduction

For convenience of general end— users, we introduce the software agent for the security system to make the system
security transparent to end— users but still preserve the power of original cryptography. The security of Java agents
mainly involves Java language''! and secure agent model.

On the one hand, the traditional way of providing software— based protection within a program is by using abstract
data types and information hiding. The main purpose of ADTs has been to proted programs from non— malicious mis-
takes made by other parts of the same software system. Since ADT's have seldom been used to provide robust security,
programming languages often provide only ordinary support for them. While perhaps good enough for use in essentially
benevolent environments, the Java package system s implementation of ADTs'? leaves much to be desired. Java pack-
ages have limited ability to control access to their member classes, they don t have explicit interfaces, and don t sup-
port multiple views of modules. These characteristics make the Java package system deficient for modular programming
tasks in which security is important; for example, for writing mobile applications.

With reference to Standard ML and its associated Compilation Manager'?, extend the idea of module— level
ADTs by providing the facility for structuring modules hierarchically. Lower levels in a module hierarchy can communi-
cate across more expressive interfaces; higher levels can enforce more restrictive ones.

In addition, an extra problem confronts dynamically linked programs: a piece of code is designed to behave proper
ly only when its unresolved symbols are matched against the particular set of external objects with which the progran-
mer intended his module to be linked' > . But since linking is often not under the control of the progranmer who wrote
the module— as in the Java virtual machine, for exanple, steps must be taken to ensure that after linking a program will

behave in a manner consistent with the progranmer s intentions. The typical way of ensuring safe linking is through

Recei ved date: 2002- 06— 13

Foundation item: Supported by Chinese 1973 Programme(G1998030600) ; N atural Science Foundation of Fujian Province(FO0013)

Biography: LIU Chuan- cai(1963—) ,male, was bom in Linli County, Hunan Province, associate professor of College of Information Science and Tech-
nology,, Fuzhow University, Doctor; research area is cryptography and pattem recognition.

1 : Java Agents 27

type— check. This method guarantees that the types of symbols in the interfaces between modules match, but it does
nothing else to ensure that the objects with which a program links will behave in the manner that the programmer ex
pects.

On the other hand, agents are communication and coperation entities in the agent systems[ﬁ] . We allow sofiware
agent to be an autonomous software program that provide services to act for its end— user and to interact or even to ne-
gotiate with other software agents for appropriate security policies. In fact, Gasser and Hewitt proposed the agent negoti-
ation cncepts in their early DAT research! " 81 Software agent must negotiate on behalf of its end— user the security
criteria that include the security policy adoption, the level of security capability, digital signature mechanism, and key
exchange management, etc. These sofiware agents use secure agent communication protocols to negotiate and communi-
cate with each other. Therefore, the secure communication protowls are more flexible while executing by sofiware &
gents.

In view of above consideration, we first make research on mechanisms for secure modular programming in Java,
and we introduce a hierarchical module system similar to that of Standard ML that improves upon Java packages by pro-
viding explicit interfaces, multiple views of modules based on hierarchical nesting, and more flexible name— space man-
agement. Our solution to the problem of dynamic linking is to give the progranmer more control over the linking pro-
cess. Regardless of his inherent lack of knowledge about and comntrol over the circumstances under which linking will
occur,we wish to be able to guarantee in advance certain properties about the linking environment. Our module system
facilitates such control by allowing the programmer to specify a key with which a foreign module must be digitally
signed in order for linking to be allowed. The details of the linking process remain abstract to the programmer, and the
linking specifications are simple and declarative. Second,we develop a secure agent model to discuss security issues.

Finally, we propose a practical solution that addresses some of these security issues.

2 Research Objectives and Requirements for Security Agents

The aims of this research are shown as the followings.

(1) Introduce a hierarchical module system to improve upon Java packages, and give the progranmer more control
over the linking process.

(2) Propose a cmplée process for secure agent communication protowls, which including security policy negotia
tion, secure agent communication protocols set up, secure agent communication protocols operation, etc.

(3) Find out how the speech— act based secure agent conversation protocols can be embedded in the object— ori-
ented Java programming language in the secure communication protomls.

(4) Set up speech— act based secure agent conversation protocols as finite state machine (FSMs) in object— or
ented dynamic model.

Generally speaking, enomous secure communication protocols have already been proposed to tackle the security

.9~ 12
mechanism! |

in a traditional cryptology. Usually, the end— users are the primary principals to do the secure com
munication. Why we still introduce the agent concepts in this ready to run secure communication protocols? Some of
the reasons are shown as the followings.

(1) Handle the complexity of cryptography protocols. The complexity of cryptography makes it nearly impossible
for end— user to realize and make the best utilization of this technology. Agent system developer applies the agent ideas
in the security protocols processing that will hide the complexity of security from end— users.

(2) Choose the right security criteria and parameters for end— user. There are several important security criteria
proposed by cryptography algorithms but not all of them are required for each transaction. We propose the software agent
to recommend or even autonomous user s most favorable viewpoint.

(3) Provide the flexibility of cryptography protocols. Different computer systems might use different approach to do

their system-security, network security. Initially, agents exchange information to negotiate their acceptable security pol-

28 () 24

cies then finalizes their security algorithm, criteria and protocols.

(4) Increase the efficiency of the security processing. Once end— user grants his authority to agent to autonomous-
ly process security mechanisms, this sofiware agent must accomplish the mission in the most reliable and efficient way.
We must ensure that the software agents do provide higher efficiency than general end— user in the security policy se-

lection, security mechanism decision, and final security protocols setting and operation.

3 Secure Modular Programming in Java
3. 1 Fixing Java Packages

In our scheme,we adopt the method of Bauer, Appel and Felten'". In reference [1], the syntax module system
contains numbers of features that either are not present or are insufficiently developed in the Java package system. The
most important are explicit export interfaces and membership lists, hierarchical scalability and multiple interfaces, and
convenient name— space management. In addition to their value as software engineering tools, these are all instrumental
in forming a base for developing secure software systems in Java.

Export interfaces and membership lists, a well- established principle of sofiware engineering is that the interface
of a module should be separated from its implementation. This enables a client of a module to be written and type—
checked agairst the interface before the module s implementation is written. It also allows the module s implementation
to be type— checked against the same interface to ensure that the implementation adheres to its own specification. This
means that the implementation of the module and any of its clients can developed in parallel and modified independent
ly of each other, separately type— checked and compiled, and later linked safely without further checking. Separating
the interface from the implementation also aids in the construction of ADTs by making it clear which parts of the ADTs
form its public interface and which should remain private.

Java supports modular programming at both the class level and the package level. At the class level, Java has some
notable deficiencies: it is impossible to flag methods declared in interfaces as either final or static, which limits the de-
gree to which its clients can take advantage of separate type— checking and compilation. Java classes are also too fine
— grained a structure to be particularly suitable as units of modularity for traditional modular progranming.

For this purpose, Java uses the package mechanism, which provides support for modularity above the class level.
Java packages do not have explicitly specified interfaces. The interface of a package is implicitly specified by the access
modifiers that are part of the class declarations of its member classes, i. e. , the interface is defined by the set of classes
from that package that declared themselves public. Since it is defined by the component classes of a module, the intex
face is inseparable from the implementation. Such a scenario is clearly incompatible with the goals achieved by separat
ing the interface from the implementation. The only way to specify the interface to a package is to write at least the
skeletons of the implementations of the visible member classes. And because the implementation of the package defines
the interface, there is no way to type— check an implementation against its own interface, so there is no way to ensure
that the implementation matches its specification. As a vehicle for ADTs and separate compilation, therefore, the Java
package system is sorely lacking.

Except for the traditional sofiware engineering goals, module systems have recently been asked to fulfill additional
roles as well. With the widespread use of mobile code (e. g , applets, plugins) it has become necessary to protect systems
from damage that malicious mobile code might inflict, as well as to provide environments in which mutually untrustworthy
groups of mobile wde can run simultaneously but without danger of unwanted interaction. If mobile wde systems are to
rely on modules to organize code, it is important for module systems to assist in providing the security functionality needed
for mobile code, or at the very least not to interfere with other mechanisms used to provide security.

The Java package system is unsuited for this role. Because of the lack of explicit module interfaces and descrip-
tions, it is inconvenient to use packages as units for enforcing security policies. The combination of implicit interfaces

and.the lack of explicit membership lists would make it easy for a malicious attacker to take advantage of a system for

1 : Java Agents 29

running mobile cde that based its security facilities on Java packages' .

In our scheme, the module system prevents any such security breach by using module description files that explie-
itly specify both the memberships of a module and its public interface by listing all the classes that belong to each. Fus
thermore, our scheme would prevent a hostile applet such as the one described from even linking with the trusted appl-

cation.
Module The module description file in figure 1 demonstrates the use of
Graph explicit export interfaces and membership lists. Only classes defined
Node in the listed source files are considered to be part of the module. The
NodelList

module defines several classes, but only Graph, Node, and NodeList
is are visible to clients outside the module.
Graph. java Though a significant improvement from the standpoint of securt+
FlowGraph. java ty and progran organization, the interfaces of our module system
Node. java . . .
! don t address the issue of separate wmpilation. The interfaces are
NodeList. java . ; . .
merely lists of classes and do not describe their types, so an imple-
FlowNode. java . .
mentation cannot be type— checked againg them. In order to over

GraphUtils. java

come this defect, our approach to organizing modules is similar to the
Figure 1 The Module Description Fle of a Sub-

hanism for defini its in MzScheme '), which
Module o a Register Allocator mechanism for defining units in MzScheme ™, which does support

separate compilation. But whereas the primary motivation in that
work is extensibility and code reuse, we are concerned with the security aspects of modular programming.

Hierarchical scalability and multiple interfaces,the basic ways in which our modules support ADI's are dissimilar
from those offered by Java packages. Java s module interfaces are implicit; ours are explicit, but our interface descrip-
tions consist only of classes, and don t describe public fields and methods of classes that are also part of a full intex
face. Though our module system is not powerful enough to fully describe the types of modules, it makes it simpler to
control and enforce the visibility of member classes. The interfaces of both systems have similar access control capabili-
ties: a class can be either publicly visible or visible only to other classes inside the sane module. The feature that sets
our module system off from Java packages, however, is the ability to structure modules so as to provide different views to
different clients.

Java s methods of controlling accessibility (through making classes and their fields private, protected, package—
scope, or public) aren t expressive enough, so Java resorts to using a security manager to determine at run time whether
a client is allowed to access a particular restricted class. The security manager suffers from a number of problems, from
run— time overhead to the inability to interact with the programmer except interactively. Its complexity and ambiguities
have made it vulnerable to security breaches and made it difficult to reason about and form security policy[ls].

An elegant approach to the problem of multiple interfaces has been presented by research in hierarchical modular+
ty. Hierarchical modularity is the idea of grouping several modules and attaching to such a group its own interface. The
group Is itself a module whose publicly visible members can be imported by other modules. The members of the group
can communicate among themselves through their own interfaces, which can be much less restrictive than the group s
top— level interface. This approach can be applied repeatedly to create a hierarchy of modules. For a comprehensive
treatment of hierarchical modularity see Blume and Appel ¥. We use a similar approach for Java.

The natural way to use hierarchical modularity to provide different levels of access to different modules is to group
together the modules that wish to share a high level of access with each other, and let them have appropriately unre-
stricted interfaces. The entire group can have a more restrictive interface that exports only those parts of its member s
interface that ought to be available to the public. Our module system supports hierarchical modularity by allowing mod-
ules to explicitly list the sub— modules on which they depend. Modules can export not only classes which have been de-

fined in their own source files, but also classes that have been defined in imported modules. When its module descrip-

30 () 24

tion file begins with the keyword library, compiling a module produces a JAR file that includes the byte— code of all the
imported modules, which are then kept hidden by the export interface.

The modules that comprise a compiler, for example, are likely to Library
need a high degree of access to each other. At the same time, we may Main
wish to tred the entire compiler as a module that exports only a few of s Main, java
its classes. Figure 2 , adopted from reference [1], is a module descrip- NullOut put Stream. java
tion file of the main module of a compiler, it illustrates this approach. imports
The main module imports all the sub— modules that implement different Codegen. ./ Codegen/

RegAlloc. ./ RegAlloc/

parts of the compiler and defines only a few classes that tie the sub—
Absyn. ./ Absyn/

modules together into a working system. The hierarchical strudure is
Tree. . /Tree/
transparent to a user, he has no way of knowing that the compiler mod- o
ule is composed of sub— modules. Types. ./ Types/
Util. . Util/

Name— space management, extra software engineering benefit is
Figure 2 The Module Description File of the

Top- Level Module o a Compiler

our module system s flexible and convenient name— space management
scheme. Although the naming convention used with Java packages sug
gests that they support a hierarchical naming scheme, packages with names like Java. awt and Java. awt. clor have no
more in common than packages with completely different names.

One of the reasons for grouping code into packages is to avoid name clashes between classes. But Java packages
are themselves named so that merely lifts the problem to the package level. Instead of a name clash beween two classes
called Parser, we might have a clash between two classes called Util. Parser. The accepted way of solving this problem
is to give package long, unique names. This isn t a particularly appealing solution, however, since it interferes with the
packages system s ability to provide convenient name— space management; classes must now either be referred to ind+-
vidually using their cumbersome package name (e. g., java. awt. image. renderable. Renderable Image) or be imported
entirely using the * notation, which again introduces the possibility of name clashes because the names of the i
ported classes are stripped of their unique package prefixes.

Our modules, on the other hand, are not named, so they don t suffer from this problem. Modules are assigned
names only via import statements of individual module description files; this type of name — space thinning makes it
easy to keep their names short and simple. In source code the names of external classes are always prefixed with the
name of their module, so name clashes between classes with same names are easily avoided.

The name— space management scheme we use has been borrowed without much modificaion from the approach
Blume and Appel have developed for Standard ML *.

3.2 Secure Linking

The behavior of a program fragment depends not only on its own code but also on the libraries with which it is
linked. Under the static linking model, compiling and linking a piece of wde generates an executable that is fully self—
cntained. The libraries, with which the program is linked, as well as the finished product, are available for the progran-
mer s perusal. He theredfore has good resson to expect that the self- contained executable will behave in the desired man-
ner,even if it is executed on a machine that has a different software environment and a different set of libraries.

Java adopts dynamic linking as a key feature'®. But despite the proliferation of dynamic linking, only a few at

15, 16
' Progranmers be-

tempts have been made to extend the model of wrrectness that holds for statically linked code'
lieve that programs will behave in their intended manner even though much of the programs behavior depends on the
system libraries of foreign and unknown systems. This belief is based mostly on the existence of standards that seek to
ensure the uniformity of library code (e. g. , all Java virtual machines and their associated system classes are expected
to meet Sun s standard) . There are very few guarantees, however, about adherence to a standard that are expressed in a

way. tha programs can understand. The guarantees, are largely, verbal or written in English, and can t be reasoned about

1 : Java Agents 31

or manipulaed at the level of program wde. Additionally, standardization does not apply when linking with third- party
libraries. The only widely used method of ensuring safe linking, and the method used by Java, is type— checking the in-

I and provided ways of ensuring

terfaces between program fragments. Recent research has desirable security propel’[y[7
that type— safety is preserved by the linking process. Still, though type— checking is useful in ensuring that programs
and libraries at least agree on the types they are using, it falls far short of guaranteeing that code will behave in the ex
pected manner.

Our module system makes headway on this issue by allowing the programmer to require certain properties of the
modules on which his code depends. If the required properties are not present, the program won t link or execute. If
they are present, the programmer can more realistically expect that his program, once linked, will behave in the desired
mamer. Furthermore, the programmer can anmotate his own module with certain guarantees that are held to be valid
once linking has succeeded. We thus establish a systam in which a module can assert that if the modules it imports can
guarantee certain behavioral properties, then it, too, will behave in a certain manner.

We implement annotation of properties through digital signatures. The JAR file of a module may be signed with
one or more keys, each of which represents a property. The import statements of a module description file can specify
the key alias of the key with which an imported module must be signed. One of the modules is a parser, the compiler
wishes to advertise itself as unicode— friendly, but in order to make such a claim it must rely on the unicode— friendl-
ness of its parsing module. Since the various module of the compiler might be dynamically linked at run time by the Ja
va virtual machine, the top— level module of the compiler needs to be sure that it will be linked with a parsing module
that has the appropriate functionality. An import statement in the module description file of the compiler specifies that
the parsing module must be annotated with the unicode property. Linking will be allowed only if the parser s JAR file
is signed with the key that wrresponds to this property. The main module of the compiler can itself be signed with the
same key, which makes it possible for the compiler s clients to require the compiler to have the unicode property.

Since a program will not execute unless it is convinced that its sub— components are usable, our approach comple-
ments traditional code signing well. Authorship can be regarded as just another property, and the author of a program
may now actually be willing to be held responsible for the correct behavior of his code.

It should be noted that our use of explicit import interfaces somewhat restricis the flexibility of dynamic loading.
In Java it is possible, at run time, to load classes whose names are unknown at compile time. Fxplicit import interfaces
require the progranmer to specify, prior to compilation, the locations of the modules on which his code depends. Though
class names do not have to be specified in the import interface, the locations of the modules, at least, need to be known
at compile time, which precludes some interesting uses of dynamic loading. This restriction isn t too limiting, however,
since in most cases it should be possible to structure code so that even if the name of particular classes isn t known at
compile time, the location of its module is.

3. 3 Implementation

We use a prototype implementation derive from the literature' . Our main goal in designing the prototype imple-
mentation was to enable our system to be used easily with various existing Java compilers and virtual machines.

Our modules can be translated into Java packages. Some of the features of our module system, however, in a partie-
ular its ability to place various constraints on linking— cannot be expressed just using Java byte— code. Because of

this, our prototype implementation needs to provide additional features both to the compiler and to the virtual machine.

4 Autonomous Security for Java Agent Systems
4.1 Security Mechanisms in Java— based Agent Systems

Mobile agents move from one machine to another and can execute on each of them. A major security problem in a
network— oriented environment is that neither the agent nor the machines are necessarily trustworthy. The agent might

try to harm the machine and gain access lo local resources. T he machines might try to harm the agent or access its pri-

32 () 24

vate information and resources. Either the machine or the agent may be malicious or badly programmed. However, this
distinction is not of primary concern because the final effect can be the same. Security is perhaps the most critical issue
in mobile— agent system.

In the current agent systems, several different approaches are used to address these problems. There is a wnsensus
that mechanisms should be provided to keep these machines from being harmed by the agents as well as to protect the
agents from these machines. However, only a few systems implement some protection of the agents from the machines.

Security in Java— based agents is also a major concern. In this system, the server wants to be protected from an
incoming malicious agent. On the other hand, the agent wants to have its information protected while it is traveling from
one machine to another. Each place in the systan might have its own policies while each engine has an overall policy.

Two concepts are fundamental to the understanding of this system: safety and security. The term safety refers to
features that mainly promote robustness and prevent accidents. The term security, on the other hand, refers to features
that are intended to provide protection and integrity in the presence of malicious users. These security features protect
agents and places from each other.

Every agent is uniquely identified by a telename which consists of two components: an authority and an identity.
The authority identifies the owner of the agent.The identity distinguishes an agent from another agent of the same aw
thority. The authority component is cryptographically generated and cannot be forged''”.

Each agent has a permit, which limits its capability and the resource consumption. In this way, agents and places
can be protected from malicious or badly programmed agents. Two kinds of capabilities are granted an agent by its pes
mit. The first kind is the right to execute certain commands. The second is the right to use a particular resource and by
which amount. An agent s pemit is granted when the agent is first created and is renegotiated whenever that agent mi-
grates to another place with a different administrative authority.

Besides access control, secure channels are provided to support agent mobility n a distributed process enviror-
ment. These channels provide an authenticated opaque pipe , normally created using cryptography! 81, Depending on
the specific application, different levels of security can be provided. If authentication is required, strong mutual auther-
tication using RSA public key encryption, session key negotiation, and session encryption is used' ™.

4.2 Embed Security Services in Java Agent
There are several Java agent systems existing in the Internet but not all of them provide speech— act message com-

9,20 -
| These speech— act communication ae-

munication services. Searle proposed speech— act concepts in early 70 o'
tion messages can be expressed in tems of illocutionary logic*'!. In order to enable the software agents to be an aw
tonomous conversation entities, use speech— act message for interactive agents is the major approach for most the agent
researchers 2~ 4|

Then, we show what are security features in the Java JDK (Java Development Toolkit) environment. Since our Java
agents provide more dynamic and flexible security services during their cooperative conversation. So we also explain why
our secure Java agent communication protowls are more versaile when compared with existing security communicat ion
protocols, such as SSL (Secure Socket Layer) .
4.3 A Model for Agent Based Java

In this section, we will introduce a generalized ASE (Agent Support Environment) model by providing many of its
features. This model will then be used to explore the main security problems in agent based on a classification presented
in reference [25].
4. 3.1 The Model The ASE systam, as one can notice from the different implementations that were presented, needs to
support creation, execution, resource access, migration, communication, Java language support and additional services.
For Java language support, it involves the issue of interpreted versus compiled languages. It also involves support for just
one specialized language versus the support of many different languages to be used in progranming agents. As concerns

additional services, such services like authentication, name service, check pointing, as well as other system built— ins.

1 : Java Agents 33

The issue here is that some of these services can be implemented through the system while others are easier to imple-
ment using agents.

Note that all of the above mentioned features can help define an agent architecture and thus provide a framework

within which all current research can be viewed and security issues can be discussed. The following is a description of
the security issues associated with these different features of an agent— based system.
4. 3. 2 Security in Agent Based Java Indubitably, security is the most important issue on which the applicability of &
gent systems rides!” *' . No matter what the features of an implementation are, if they can t provide an adequate secu
rity model for all the issues involved, then this implementation will definitely fail. There has even been a suggestion to-
wards the need for security profiles in agent systems to see if any given system adequately addresses all the issues
concerned ™ .

In current operating systems, the system resources are the most important parts of the system and thus should be
protected from malicious use. It is acceptable that, in such a system, the solution for the security problem is based on
splitting the domain into a user space and a kernel space. This is not the case in an agent system where the user has a
vested interest in the agent and part of its resources that the system should not have control over.

4.3.3 A Practical Solution Most of the research about security on Agent Based Computing focuses on the protect

[26.30.31] Moreover, those works that ad-

the machine from agents and protect an agent from other agents problems
dress the other secure agent— based computing issues either intend to solve the problem but don t have a real solution
yetl25J or just mention that these problems are important and need to be solved.

Here,we propose a solution that also addresses the protect the agent from the machine issue,which is a very i
portant concern from the user s point— of view. One major design is to wnceive a practical solution using current tech
nology. Therefore, our solution is both simple to understand and to implement, and does not depend upon a net— wide sex-
vice, like a secure public key distribution system. The PEM acceptance problem (Privacy— Enhanced Mail'™) has shown
that this kind of new distributed net— wide directory infrastructure turns into a barrier to the adoption of the solutions
based on it!™ . Note that if such an infrastructure became available, the rational for this choice changes completely. But
we don t expect this to be the case in the next few years.

Another important design decision is that an agent not concerned about security should incur any security over
head. In other words, our goal is to design a flexible solution that does not require the use of the security mechanisms by
the agents that don t need them. Thus, all the schemes described here are to be added to the traditional features found
in an ASE.

Our approach to the proted the machine from agents problem is the common one: the agent runs in a restricted
environment and all accesses to resources have to pass through a security monitor. This monitor decides if the agent is
interpreted. For example, the Java Agent provides a framework to implement this kind of monitor.

The problem resides in deciding whether a particular agent has access to a given resource. An easy solution is
defining the same rights to all agents (as Java does'™) . However, this is a very restrictive solution. A better approach
would be to grant different accesses depending on who owns the agent. Since we have decided not to use a distributed
authentication service,we have to rely on passwords to securely identify the agent owner. Protocols that safely negotiate
cryptographic keys (like SSL**') must be used to avoid the discovery of passwords by monitoring the network . Default
access rights can be supplied for unknown users. Of course, a group of hosts can share the same password database, but
our solution doesn t require this nor does it define how this can be done. We call this step the authentication phase.

In our scheme, we choose a conventional Access Control List (ACL) mechanism to decide if an agent can or car-
not access a resource, given that the system knows who owns the agent.

It is clearly impossible to protect the agent from the machine on which it runs. Agent executes when and if its host
machine wants. An agent needs to care about this question before it moves into a machine. Our solution requires that the

machine send. a counter—, password to the agent during the authentication phase. This means that both agent and target

34 () 24

machine need to know a triple (user, password, and counter— password) and allows the agent to determine if it is mow-
ing to a known machine.

In spite of that, an agent can still have some critical information stolen by a known machine. The shopping around
agent is a perfect example of that situation. One of the digital stores the agent visits can steal the money being carried
by the agent.To avoid that, we require that an agent concerned about security return back to its home (and so, wm
pletely secure) site after it finishes its job at the target site. Additionally, an agent is to carry only the resources and i
formation it may need into the destination host. Observe that this implies that a secure agent cannot move about; it has
to do a single round- trip. However, the same kind of service can still be provided because an agent can travel again
after its returns to its home site. Actually, it has to be modified to carry useful information in the new destination, but
this also doesn t limit the development of any type of agent based application. We call such a specialized, restricted &
gent a minimal agent.

The protect an agent from other agents problems can be seen as a special case of the protect the machine from
the agents problem, except for the communication issues. One could think of using the same password plus ACL solu
tion to cope with the secure communication issue. But, because any message could be intercepted by the host which is
running the agent (even if the message is encrypted, the host can wait until the agent decrypts it), this is not worth-
while. Thus, we don t provide a special mechanism to make message— based communication more secure. If an agent
needs this kind of service, it should migrate to the destination host (returning first to the home host) and communicate
locally.

Protect a group of machines from an agent 1is a very difficult problem because even if the resource— hoarding &
gent is detected and killed, the owner of that agent can send a new instance of it again. Consequently, it is necessary to
determine who the owner (or at least, the originator machine) of the resource gathering agent is and log this information
in order to figure out who is creating this kind of malicious agent. The problem is how to know who the owner of a par
ticular agent is or from which machine it has been sent. Because, in our solution,we can determine this just for the a
gents that are using the services proposed here, there is no way to solve this problem for the general case of completely
mobile agerts.

The currency— based resource— allocation scheme suggested by Gray doesn t solve this problem in all cases e+
ther. In many cases, the machines on which an agent can run don t want to ask for some form of electronic airrency be-
cawse it is in the machine s best interest that the agent run and obtain as much information as it wants. The perfect ex

ample is a digital shopping center. In these cases, currency schemes don t really work.

5 Conclusions

With the development of computer networks, software agents are perhaps a very useful approach in building a large
set of network applications. However, the security problems tha can be raised by supporting agents can prevent the wide
use of agent based applications. Moreover, distributed security concerns tend to become more important as we begin to
use open computer networks to transfer information of more dired economic value. There, a secure way to use agents is
fundamental to make viable their application in public networks, like the Internet.

The security of Java agent mainly involves two problems: one is Java language itself, the other is secure agent mod-
el. Therefore, we first introduce a new module system to Java that improves upon many of the deficiencies of the Java
package system and gives the programmer more control over dynamic linking. Second, we develop a general agent model
and discuss general security issues in that model. Finally, we propose a practical solution that addresses some of those
security issues.

However, the authentication does not guarantee that the machine will not attack the agent. In order to reduce the
damage that such kind of attad could incur, we mtroduce the concept of minimal agent, which carries only the informa-

tion. it may need into. the host . and always retumns back to, its safe home host when its job is done.

1 : Java Agents 35

It is obvious tha our solution involves some restrictions in the way agents can be used. Nevertheless, any applica
tion that can be built in the standard insecure agent model,

The agent security problems are very hard. An appealing alternative way to address these problems is the soft se-
curity approach[27728] . Soft security means that privileges are granted, as they are needed, with the current risks taken
into consideration. As opposed to soft security, hard (i. e., traditional) security uses methods that don t reevaluate

granted privileges.

References:
[1] BAUER LUJO, APPLE ADREW W, FELTEN EDWARD W. Mechanisms for Secure Modular Progranming in Jave R]. Technical Re-
port: TR— 603— 99, Department of Computer Science, Princeton University , 1999.
[2] GOSLING JAMES, JOY BIL, STEELE GUY. The Java Language Specification, the Java Series| M| . Reading, M assachusetts: Addison
- Wesley, 1996.
[3] MILNER ROBIN,TOFTE MADS,HARPER ROBERT. The Definition of Standard ML[M] . Cambridge, MA: MIT Press, 1990.
[4] BLUME MATTHIAS, APPLE ANDREW. Hierarchical Modularity[M] . ACM Transactions on Programming Language and Systems,
1999.
[5] CARDELLI LUCA. Program Fragments, Linking, and Modularization| A] . 24th ACM SIGPLAN- SIGACI' Symposium on the Principle
of Programming Languages | C|. Bakimore, 1997. 266— 277.
[6] LINDHOIM TIM, YELLIN FRANK. The Java Virtual Machine Specificaton[M]. Reading, M assachusetts: Addison— Wesley, 1997.
[7] LEROY XAVIER, ROUAIX FRANCOIS. Security Properties of Typed Applets[A]. Conference Record of POPL 98: The 25 ACM
SIGPLAN- SIGACT Symposium on Principles of Programming Languages| C] . San Diego, Calfornia, 1998. 391- 403.
[8] SUN MICROSYSTEMS. Java Core Reflecton| EB/OL] . hitp:// www. java. sun. com/ products/ jdk/ 1.2/ docs/ guide/ reflection/ spec/
java— reflection. doc. html, 1998.
[9] GRAFINKEL, SIMSON, GENE SPAFFORD. Practical UNIX & Intemet Security [R] . O Reilly & Associates, Inc. , 1996.
[10] KAUFMAN CHARLIE, PERMAN RADIA, SPECINER MIKE. Netwoik Security Private Communication in a Public Worlds[M] . En-
glewood Cliffs, NJ: Prentice Hall, 1995.
[11] PFLEEGER, CHARLES P. Security in Computing(2nd Edition) [M]. Englewood Cliffs, NJ: Prentice Hall, 1997.
[12] SCHNEIER, BRUCE. Applied Cryptography(2nd Edition) [M] . San Francisco, US: John Wiley & Sons, 1996.
[13] DEAN DREW, FELTEN EDWARD W, WALLACH DAN §S, etc. Java Security: Web Browsers and Beyond| A]. DOROTHY E DEN-
NING, PETER J DENNING. Internet Beseiged: Courtering Cyberspace Scofflaws| C] . ACM Press, 1997.
[14] GREG NELSON.Sysems Programming With Modula— 3[M]. Englewood Cliffs, New Jersey: Prentice Hall Series in Innovative Tech
nology, Prertice Hall, 1991.
[15] DEAN DREW.The Security of Static. Typing wih Dynamic Linking[A]. Fourth ACM Conference on Computer and Communications
Security[C]. Zurich, Switzerland, 1997.
[16] DEAN RICHARD DREWS. Fomal Aspects of Mobile Code Security| D] . Princeton University , 1999.
[17] LUIS VALENTE. Safety in Telescript| EB/OL] . http: //www. catless. ncl. ac. uk/Risks/ 15. 39. himl# subj6, 1994.
[18] GENERAL MAGIC. An Introduction to Safety and Security in Telescript| EB/ OL] . hitp: / / www. genmagic. com/ Telescript/ security.
html, 1995.
[19] SEARLE, JOHN R. Speech Acts| M] . Cambridge, UK: Cambridge University Press, 1969.
[20] SEARLE, JOHN R.The Philosophy of Language| M] . Oxford, UK: Oxford University Press, 1971.
[21] SEARLE, JOHN R, VANDERVEKEN DANIEL. Foundations of Illocutibnary Logid M] . Cambridge, UK: Cambridge Universiy Press,
1985.
[22] CHANGM K,WOO C C. A Speech— Act— Based Negotiation Protocol: Design, Implementation, and Test Use[J] . ACM Transaction
on Information Systems, 1994, 12(4): 360- 382.
[23] FININ T.KQML as an Agent Communication Language| A] . The Proceedings of the Third Irtemational Conference on Information
and Knowledge Management[C] . ACM Press, 1994.
[24] LABROU Y, FININ TIM. A Semantics Approach for KQML- A General Purpose Communication Language for Software Agents| A] .
The Proc. of the Third, International, Conference , on Information and, Knowledge Managemert| C]. ACM Press, 1994.

36 () 24

[25] ROBERT S GRAY. Agent Tcl: A Flexible and Secure Mobile- agent System. Proc. of the Fourth Annual Tel/ Tk Woxk shop (TCL 96)
[EB/OL]. http: //www. cs. dartmouth. edu/ agents/ papers/ tcl96. ps. Z, 1996.

[26] OUSTERHOUT JOHN, LEVY JACOB, WELCH BRENT. The Safe— T Security Model[M]. Sun M icrosystems Laboratories, 1996.

[27] RASMUSSON ANDREAS, JANSSON SVERKER. Personal Securiy Assistance for Secure Internet Commerce. New Security
Paradigms 96 Woikshop[EB/OL] . hitp: / / www. sics. se/ ara/ doc/ NSP/ NSP. himl, 1996.

[28] RASMUSSON LARS, JANSSON SVERKER. Simulated Social Contwl for Secure Internet Commerce. New Security Paradigms 96
Workshop[EB/ OL]. hitp: // www. sics. se/ Ira/ nsp96/ nsp96. html, 1996.

[29] BROWNE SHIRLEY. Need for a Security Profile for Agent Execution Environments CIKM 95 Workshop on Intelligent Information
Agents| EB/OL] . http: / / www. cs. umbe. edw/ %7 ecikm/ iia/ submitted/ view ing/ browne. html, 1995.

[30] SUN MICROSYSTEMS.The Java Language: An overview| EB/ OL] . fip: / / ftp. javasoft. com/ docs/ java— overview. ps, 1995.

[31] JOHANSEN DAG, RENESSE ROBERT VAN, SCHEIDNER FRED. An Introduction to the TACOMA Distributed Sysem: Version 1.
0.T echnical Report: 95— 23, Depaitment of Computer Science, University of Tromso[EB/ OL] . http: / / www. cs. uit. no/ Lokalt/ Rap-
porter/ Repoits/ 9523. himl, 1995.

[32] LINN J, KENT S, BALENSON D, etc. Privacy Enhancement for Internet Elecironic Mail: Parts 1—- 1V. Inemet RFC 1421- 1424
[EB/OL]. ftp:// fip. internic. net/rfe/ rfcl42[1- 4] . txt, 1993.

[33] BRADEN R, CLARK D, CROCKER S, etc. Repoit of IAB Workshop on Security in the Internet Architecture. Internet RFC 1636
[EB/OL]. fip:// fip. internic. net/ rfc/1fc1636. txt, 1994.

[34] FREIER ALAN O, KARLTON PHILIP, KOCHER OAUL C. The SSL Pwtocol: Version 3. 0. Intemet Draft[EB/OL]. http: / / www.
home. netscape. com/ eng/ss13/ ssl- toc. html, 1996.

Java Agents

X 4% 7

(, 350002)

S HRERP, AT H AR L6 R AR TR RET T BPEHZ AR FX#ET HTIERES X,
RAPE TR VR SR E REF AR, 3 agents AT AR AAESH. 4 agents A& i R B AP IFL, R Al 5@ AR D, X
ELIEME Aoty g A AL AT 09 A AE R SRRk B Java BRBEME LM S MG ERHAZFM FHF LSO B ERGIER AR,
I Java— agent B9 B E KA. agen AP B A AL AR A, T A ER 69 E el f§ k.
DB agents; AL AR SHAEE A T XL
:TP311 :A

