
� � 第 24卷� 第 1期� 吉首大学学报(自然科学版) Vol. 24� No. 1� �

� � 2003年 3月 Journal of Jishou University (Natural Science Edit ion) Mar. 2003� �

Article ID:1007- 2985(2003) 01- 0026- 11

Security Issues for Java- Based Agents
�

LIU Chuan-cai

(College of Information Science and Technology, Fuzhou University, Fuzhou 350002, Fujian China)

Abstract:With the popularization of computer networks, there has been a shift proposed in distributed system programming from the remote

procedure call to the remote programming paradigm, to decrease network traffic and improve performance. Software agents could be used to

accomplish this task. The use of agents has several advantages and a few disadvantages, including added security issues. In order to imple-

ment autonomous security of Java agent, the author presents a new module system for Java that improves upon many of the deficiencies of the

Java package system and gives the programmer more control over dynamic linking. Next, the author develops a general agent model and dis-

cusses general security issues in that model. Finally, the author proposes a practical solution that addresses some of those security issues.

Key words: software agents; remote procedure call; dynamic linking; autonomous security

CLC number:TP311 Document code:A

1 � Introduction
� �For convenience of general end- users, we introduce the software agent for the security system to make the system

security transparent to end- users but still preserve the power of original cryptography. The security of Java agents

mainly involves Java language[1] and secure agent model.

� �On the one hand, the traditional way of providing software- based protection within a program is by using abstract

data types and informat ion hiding.The main purpose of ADTs has been to protect programs from non- malicious mis-

takes made by other parts of the same software system. Since ADTs have seldom been used to provide robust security,

programming languages often provide only ordinary support for them.While perhaps good enough for use in essentially

benevolent environments, the Java package system�s implementat ion of ADTs[2] leaves much to be desired. Java pack-

ages have limited ability to control access to their member classes, they don�t have explicit interfaces, and don�t sup-

port multiple views of modules. These characteristics make the Java package system deficient for modular programming

tasks in which security is important; for example, for writ ing mobile applications.

With reference to Standard ML[3] and its associated Compilation Manager[4] , extend the idea of module- level

ADTs by providing the facility for structuring modules hierarchically. Lower levels in a module hierarchy can commun-i

cate across more expressive interfaces; higher levels can enforce more restrictive ones.

In addition, an extra problem confronts dynamically linked programs: a piece of code is designed to behave proper-

ly only when its unresolved symbols are matched against the particular set of external objects with which the program-

mer intended his module to be linked[5] . But since linking is often not under the control of the programmer who wrote

the module- as in the Java virtual machine, for example, steps must be taken to ensure that after linking a program will

behave in a manner consistent with the programmer�s intentions. The typical way of ensuring safe linking is through

� Received date: 2002- 06- 13
Foundation item: Supported by Chinese 1973 Programme(G1998030600) ;Natural Science Foundation of Fujian Province(F00013)
Biography: LIU Chuan- cai(1963-) ,male, was born in Linli County,Hunan Province, associate professor of College of Informat ion Science andTech-
nology, Fuzhou University, Doctor; research area is cryptography and pattern recognition.

type- check.This method guarantees that the types of symbols in the interfaces between modules match, but it does

nothing else to ensure that the objects with which a program links will behave in the manner that the programmer ex-

pects.

On the other hand, agents are communication and cooperation entities in the agent systems[6] . We allow software

agent to be an autonomous software program that provide services to act for its end- user and to interact or even to ne-

got iate with other software agents for appropriate security policies. In fact, Gasser and Hewitt proposed the agent negot-i

ation concepts in their early DAI research[7, 8] . Software agent must negotiate on behalf of its end- user the security

criteria that include the security policy adoption, the level of security capability, digital signature mechanism, and key

exchange management , etc. These software agents use secure agent communicat ion protocols to negotiate and commun-i

cate with each other. Therefore, the secure communication protocols are more flexible while executing by software a-

gents.

In view of above consideration, we first make research on mechanisms for secure modular programming in Java,

and we introduce a hierarchical module system similar to that of Standard ML that improves upon Java packages by pro-

viding explicit interfaces, multiple views of modules based on hierarchical nesting, andmore flexible name- space man-

agement. Our solution to the problem of dynamic linking is to give the programmer more control over the linking pro-

cess. Regardless of his inherent lack of knowledge about and control over the circumstances under which linking will

occur,we wish to be able to guarantee in advance certain propert ies about the linking environment .Our module system

facilitates such control by allowing the programmer to specify a key with which a foreign module must be digitally

signed in order for linking to be allowed.The details of the linking process remain abstract to the programmer, and the

linking specifications are simple and declarative. Second,we develop a secure agent model to discuss security issues.

Finally,we propose a practical solution that addresses some of these security issues.

2 �Research Objectives and Requirements for Security Agents
The aims of this research are shown as the followings.

(1) Introduce a hierarchical module system to improve upon Java packages, and give the programmer more control

over the linking process.

(2) Propose a complete process for secure agent communication protocols,which including security policy negotia-

tion, secure agent communication protocols set up, secure agent communication protocols operation, etc.

(3) Find out how the speech- act based secure agent conversation protocols can be embedded in the object- or-i

ented Java programming language in the secure communication protocols.

(4) Set up speech- act based secure agent conversat ion protocols as f inite state machine (FSMs) in object- or-i

ented dynamic model.

Generally speaking, enormous secure communication protocols have already been proposed to tackle the security

mechanism[9~ 12] in a traditional cryptology.Usually, the end- users are the primary principals to do the secure com-

munication.Why we still introduce the agent concepts in this ready to run secure communication protocols? Some of

the reasons are shown as the followings.

(1) Handle the complexity of cryptography protocols. The complexity of cryptography makes it nearly impossible

for end- user to realize andmake the best utilization of this technology. Agent system developer applies the agent ideas

in the security protocols processing that will hide the complexity of security from end- users.

(2) Choose the right security criteria and parameters for end- user. There are several important security criteria

proposed by cryptography algorithms but not all of them are required for each transaction. We propose the software agent

to recommend or even autonomous user�s most favorable viewpoint.

(3) Provide the flexibility of cryptography protocols. Different computer systems might use different approach to do

their system security, network security. Initially, agents exchange information to negotiate their acceptable security pol-i

27第 1期� � � � � � � � � � � � � � 刘传才:基于 Java的 Agents 的安全问题

cies then finalizes their security algorithm, criteria and protocols.

(4) Increase the efficiency of the security processing. Once end- user grants his authority to agent to autonomous-

ly process security mechanisms, this software agent must accomplish the mission in the most reliable and efficient way.

We must ensure that the software agents do provide higher efficiency than general end- user in the security policy se-

lection, security mechanism decision, and final security protocols setting and operation.

3 � Secure Modular Programming in Java
3. 1 Fixing Java Packages

In our scheme,we adopt the method of Bauer, Appel and Felten
[1]

. In reference [1] , the syntax module system

contains numbers of features that either are not present or are insufficiently developed in the Java package system. The

most important are explicit export interfaces and membership lists, hierarchical scalability and mult iple interfaces, and

convenient name- space management. In addition to their value as software engineering tools, these are all instrumental

in forming a base for developing secure software systems in Java.

Export interfaces and membership lists, a well- established principle of software engineering is that the interface

of a module should be separated from its implementat ion. This enables a client of a module to be written and type-

checked against the interface before the module�s implementation is written. It also allows the module�s implementation

to be type- checked against the same interface to ensure that the implementation adheres to its own specification.This

means that the implementation of the module and any of its clients can developed in parallel andmodified independent-

ly of each other, separately type- checked and compiled, and later linked safely without further checking. Separating

the interface from the implementation also aids in the construction of ADTs by making it clear which parts of the ADTs

form its public interface and which should remain private.

Java supports modular programming at both the class level and the package level. At the class level, Java has some

notable deficiencies: it is impossible to flag methods declared in interfaces as either final or static, which limits the de-

gree to which its clients can take advantage of separate type- checking and compilat ion. Java classes are also too fine

- grained a structure to be particularly suitable as units of modularity for tradit ional modular programming.

For this purpose, Java uses the package mechanism, which provides support for modularity above the class level.

Java packages do not have explicitly specified interfaces.The interface of a package is implicitly specified by the access

modifiers that are part of the class declarations of its member classes, i. e. , the interface is defined by the set of classes

from that package that declared themselves public. Since it is defined by the component classes of a module, the inter-

face is inseparable from the implementation. Such a scenario is clearly incompatible with the goals achieved by separat-

ing the interface from the implementation. The only way to specify the interface to a package is to write at least the

skeletons of the implementations of the visible member classes.And because the implementation of the package def ines

the interface, there is no way to type- check an implementat ion against its own interface, so there is no way to ensure

that the implementation matches its specification. As a vehicle for ADTs and separate compilation, therefore, the Java

package system is sorely lacking.

Except for the traditional software engineering goals,module systems have recently been asked to fulfill addit ional

roles as well.With the widespread use of mobile code (e. g. , applets, plugins) it has become necessary to protect systems

from damage that malicious mobile code might inflict , as well as to provide environments in which mutually untrustworthy

groups of mobile code can run simultaneously but without danger of unwanted interaction. If mobile code systems are to

rely on modules to organize code, it is important for module systems to assist in providing the security functionality needed

for mobile code, or at the very least not to interfere with other mechanisms used to provide security.

The Java package system is unsuited for this role. Because of the lack of explicit module interfaces and descrip-

tions, it is inconvenient to use packages as units for enforcing security policies. The combination of implicit interfaces

and the lack of explicit membership lists would make it easy for a malicious attacker to take advantage of a system for

28 吉首大学学报(自然科学版) 第 24 卷

running mobile code that based its security facilities on Java packages[13] .

� � In our scheme, the module system prevents any such security breach by using module description files that explic-

itly specify both the memberships of a module and its public interface by listing all the classes that belong to each. Fur-

thermore, our scheme would prevent a host ile applet such as the one described from even linking with the trusted appl-i

cat ion.

Module

Graph

Node

NodeList

is

Graph. java

FlowGraph. java

Node. java

NodeList. java

FlowNode. java

GraphUtils. java

Figure 1 The Module Description File of a Sub-

Module of a Register Allocator

� �The module description file in figure 1 demonstrates the use of

explicit export interfaces and membership lists. Only classes defined

in the listed source f iles are considered to be part of the module. The

module defines several classes, but only Graph, Node, and NodeList

are visible to clients outside the module.

Though a significant improvement from the standpoint of secur-i

ty and program organization, the interfaces of our module system

don�t address the issue of separate compilation. The interfaces are

merely lists of classes and do not describe their types, so an imple-

mentation cannot be type- checked against them. In order to over-

come this defect, our approach to organizing modules is similar to the

mechanism for defining units in MzScheme[14] , which does support

separate compilation. But whereas the primary mot ivation in that

work is extensibility and code reuse, we are concerned with the security aspects of modular programming.

Hierarchical scalability and multiple interfaces, the basic ways in which our modules support ADTs are dissimilar

from those offered by Java packages. Java�s module interfaces are implicit; ours are explicit, but our interface descrip-

tions consist only of classes, and don�t describe public f ields and methods of classes that are also part of a full inter-

face. Though our module system is not powerful enough to fully describe the types of modules, it makes it simpler to

control and enforce the visibility of member classes. The interfaces of both systems have similar access control capabil-i

ties: a class can be either publicly visible or visible only to other classes inside the same module.The feature that sets

our module system off from Java packages, however, is the ability to structure modules so as to provide different views to

different clients.

Java�s methods of controlling accessibility (through making classes and their fields private, protected, package-

scope, or public) aren�t expressive enough, so Java resorts to using a security manager to determine at run time whether

a client is allowed to access a particular restricted class. The security manager suffers from a number of problems, from

run- time overhead to the inability to interact with the programmer except interactively. Its complexity and ambiguities

have made it vulnerable to security breaches and made it difficult to reason about and form security policy
[15]

.

An elegant approach to the problem of mult iple interfaces has been presented by research in hierarchical modular-i

ty. Hierarchical modularity is the idea of grouping several modules and attaching to such a group its own interface. The

group is itself a module whose publicly visible members can be imported by other modules. The members of the group

can communicate among themselves through their own interfaces,which can be much less restrictive than the group�s

top- level interface. This approach can be applied repeatedly to create a hierarchy of modules. For a comprehensive

treatment of hierarchical modularity see Blume and Appel[4] . We use a similar approach for Java.

The natural way to use hierarchical modularity to provide different levels of access to different modules is to group

together the modules that wish to share a high level of access with each other, and let them have appropriately unre-

stricted interfaces.The entire group can have a more restrictive interface that exports only those parts of its member�s

interface that ought to be available to the public.Our module system supports hierarchical modularity by allowing mod-

ules to explicitly list the sub- modules on which they depend.Modules can export not only classes which have been de-

fined in their own source files, but also classes that have been def ined in imported modules. When its module descrip-

29第 1期� � � � � � � � � � � � � � 刘传才:基于 Java的 Agents 的安全问题

tion file begins with the keyword library, compiling a module produces a JAR file that includes the byte- code of all the

imported modules,which are then kept hidden by the export interface.

� �The modules that comprise a compiler, for example, are likely to

need a high degree of access to each other. At the same time, we may

wish to treat the entire compiler as a module that exports only a few of

its classes. Figure 2 , adopted from reference [1] , is a module descrip-

tion file of the main module of a compiler, it illustrates this approach.

The main module imports all the sub- modules that implement different

parts of the compiler and defines only a few classes that tie the sub-

modules together into a working system. The hierarchical structure is

transparent to a user, he has no way of knowing that the compiler mod-

ule is composed of sub- modules.

Name- space management, extra software engineering benef it is

our module system�s flexible and convenient name- space management

scheme. Although the naming convention used with Java packages sug-

Library

Main

is

Main. java

NullOutputStream. java

imports

Codegen. . / Codegen/

RegAlloc. . / RegAlloc/

Absyn. . / Absyn/

Tree. . /Tree/

. . .

Types. . / Types/

Util. . Util/

Figure 2� The Module Description File of the

Top- Level Module of a Compiler

gests that they support a hierarchical naming scheme, packages with names like Java. awt and Java. awt. color have no

more in common than packages with completely different names.

One of the reasons for grouping code into packages is to avoid name clashes between classes. But Java packages

are themselves named so that merely lifts the problem to the package level. Instead of a name clash between two classes

called Parser,we might have a clash between two classes called Util. Parser. The accepted way of solving this problem

is to give package long, unique names. This isn�t a particularly appealing solut ion, however, since it interferes with the

packages system�s ability to provide convenient name- space management; classes must now either be referred to ind-i

vidually using their cumbersome package name (e. g. , java. awt. image. renderable. Renderable Image) or be imported

ent irely using the �* � notat ion, which again introduces the possibility of name clashes because the names of the im-

ported classes are stripped of their unique package pref ixes.

Our modules, on the other hand, are not named, so they don�t suffer from this problem. Modules are assigned

names only via import statements of individual module description files; this type of name- space thinning makes it

easy to keep their names short and simple. In source code the names of external classes are always prefixed with the

name of their module, so name clashes between classes with same names are easily avoided.

The name- space management scheme we use has been borrowed without much modificat ion from the approach

Blume and Appel have developed for Standard ML[4] .

3. 2 Secure Linking

The behavior of a program fragment depends not only on its own code but also on the libraries with which it is

linked.Under the static linking model, compiling and linking a piece of code generates an executable that is fully self-

contained.The libraries,with which the program is linked, as well as the finished product, are available for the program-

mer�s perusal.He therefore has good reason to expect that the self- contained executable will behave in the desired man-

ner, even if it is executed on a machine that has a different software environment and a different set of libraries.

Java adopts dynamic linking as a key feature[6] . But despite the proliferation of dynamic linking, only a few at-

tempts have been made to extend the model of correctness that holds for statically linked code
[15, 16]

. Programmers be-

lieve that programs will behave in their intended manner even though much of the programs� behavior depends on the

system libraries of foreign and unknown systems. This belief is based mostly on the existence of standards that seek to

ensure the uniformity of library code (e. g. , all Java virtual machines and their associated system classes are expected

to meet Sun�s standard) . There are very few guarantees, however, about adherence to a standard that are expressed in a

way that programs can understand. The guarantees are largely verbal or written in English, and can�t be reasoned about

30 吉首大学学报(自然科学版) 第 24 卷

or manipulated at the level of program code. Additionally, standardization does not apply when linking with third- party

libraries. The only widely used method of ensuring safe linking, and the method used by Java, is type- checking the in-

terfaces between program fragments. Recent research has desirable security property
[7]
, and provided ways of ensuring

that type- safety is preserved by the linking process. Still, though type- checking is useful in ensuring that programs

and libraries at least agree on the types they are using, it falls far short of guaranteeing that code will behave in the ex-

pected manner.

Our module system makes headway on this issue by allowing the programmer to require certain properties of the

modules on which his code depends. If the required properties are not present , the program won�t link or execute. If

they are present , the programmer can more realistically expect that his program, once linked, will behave in the desired

manner. Furthermore, the programmer can annotate his own module with certain guarantees that are held to be valid

once linking has succeeded. We thus establish a system in which a module can assert that if the modules it imports can

guarantee certain behavioral properties, then it , too, will behave in a certain manner.

We implement annotation of properties through digital signatures. The JAR file of a module may be signed with

one or more keys, each of which represents a property. The import statements of a module description file can specify

the key alias of the key with which an imported module must be signed. One of the modules is a parser, the compiler

wishes to advertise itself as unicode- friendly, but in order to make such a claim it must rely on the unicode- friendl-i

ness of its parsing module. Since the various module of the compiler might be dynamically linked at run time by the Ja-

va virtual machine, the top- level module of the compiler needs to be sure that it will be linked with a parsing module

that has the appropriate functionality.An import statement in the module description file of the compiler specifies that

the parsing module must be annotated with the unicode property. Linking will be allowed only if the parser�s JAR file

is signed with the key that corresponds to this property. The main module of the compiler can itself be signed with the

same key, which makes it possible for the compiler�s clients to require the compiler to have the unicode property.

Since a program will not execute unless it is convinced that its sub- components are usable, our approach comple-

ments traditional code signing well. Authorship can be regarded as just another property, and the author of a program

may now actually be willing to be held responsible for the correct behavior of his code.

It should be noted that our use of explicit import interfaces somewhat restricts the flexibility of dynamic loading.

In Java it is possible, at run time, to load classes whose names are unknown at compile time. Explicit import interfaces

require the programmer to specify, prior to compilation, the locat ions of the modules on which his code depends. Though

class names do not have to be specified in the import interface, the locat ions of the modules, at least, need to be known

at compile time,which precludes some interesting uses of dynamic loading.This restriction isn�t too limiting, however,

since in most cases it should be possible to structure code so that even if the name of particular classes isn�t known at

compile time, the locat ion of its module is.

3. 3 Implementation

We use a prototype implementation derive from the literature
[1]
. Our main goal in designing the prototype imple-

mentation was to enable our system to be used easily with various existing Java compilers and virtual machines.

Our modules can be translated into Java packages. Some of the features of our module system, however, in a partic-

ular its ability to place various constraints on linking- cannot be expressed just using Java byte- code. Because of

this, our prototype implementation needs to provide additional features both to the compiler and to the virtual machine.

4 �Autonomous Security for Java Agent Systems
4. 1 Security Mechanisms in Java- based Agent Systems

Mobile agents move from one machine to another and can execute on each of them.A major security problem in a

network- oriented environment is that neither the agent nor the machines are necessarily trustworthy. The agent might

try to harm the machine and gain access to local resources.The machines might try to harm the agent or access its pr-i

31第 1期� � � � � � � � � � � � � � 刘传才:基于 Java的 Agents 的安全问题

vate information and resources. Either the machine or the agent may be malicious or badly programmed. However, this

distinction is not of primary concern because the final effect can be the same. Security is perhaps the most crit ical issue

in mobile- agent system.

In the current agent systems, several different approaches are used to address these problems.There is a consensus

that mechanisms should be provided to keep these machines from being harmed by the agents as well as to protect the

agents from these machines.However, only a few systems implement some protection of the agents from the machines.

Security in Java- based agents is also a major concern. In this system, the server wants to be protected from an

incoming malicious agent. On the other hand, the agent wants to have its information protected while it is traveling from

one machine to another. Each place in the system might have its own policies while each engine has an overall policy.

Two concepts are fundamental to the understanding of this system: safety and security. The term safety refers to

features that mainly promote robustness and prevent accidents. The term security, on the other hand, refers to features

that are intended to provide protection and integrity in the presence of malicious users. These security features protect

agents and places from each other.

Every agent is uniquely identified by a telename which consists of two components: an authority and an identity.

The authority identif ies the owner of the agent . The identity distinguishes an agent from another agent of the same au-

thority. The authority component is cryptographically generated and cannot be forged [17] .

Each agent has a permit, which limits its capability and the resource consumption. In this way, agents and places

can be protected from malicious or badly programmed agents. Two kinds of capabilities are granted an agent by its per-

mit. The first kind is the right to execute certain commands. The second is the right to use a particular resource and by

which amount. An agent�s permit is granted when the agent is first created and is renegotiated whenever that agent m-i

grates to another place with a different administrative authority.

Besides access control, secure channels are provided to support agent mobility in a distributed process environ-

ment. These channels provide an authenticated �opaque pipe�, normally created using cryptography[18] . Depending on

the specific application, different levels of security can be provided. If authentication is required, strong mutual authen-

tication using RSA public key encryption, session key negotiat ion, and session encryption is used
[18]

.

4. 2 Embed Security Services in Java Agent

There are several Java agent systems existing in the Internet but not all of them provide speech- act message com-

munication services. Searle proposed speech- act concepts in early 70�s[19, 20] . These speech- act communication ac-

tion messages can be expressed in terms of illocutionary logic[21] . In order to enable the software agents to be an au-

tonomous conversation entities, use speech- act message for interactive agents is the major approach for most the agent

researchers[22~ 24] .

Then, we show what are security features in the Java JDK (Java Development Toolkit) environment. Since our Java

agents provide more dynamic and flexible security services during their cooperative conversat ion. So we also explain why

our secure Java agent communicat ion protocols are more versat ile when compared with existing security communicat ion

protocols, such as SSL (Secure Socket Layer) .

4. 3 A Model for Agent Based Java

In this section, we will introduce a generalized ASE (Agent Support Environment) model by providing many of its

features. This model will then be used to explore the main security problems in agent based on a classification presented

in reference [25] .

4. 3. 1 The Model�The ASE system, as one can notice from the different implementations that were presented, needs to

support creat ion, execut ion, resource access, migration, communication, Java language support and additional services.

For Java language support, it involves the issue of interpreted versus compiled languages. It also involves support for just

one specialized language versus the support of many different languages to be used in programming agents. As concerns

additional services, such services like authentication, name service, check point ing, as well as other system built- ins.

32 吉首大学学报(自然科学版) 第 24 卷

The issue here is that some of these services can be implemented through the system while others are easier to imple-

ment using agents.

Note that all of the above ment ioned features can help define an agent architecture and thus provide a framework

within which all current research can be viewed and security issues can be discussed.The following is a descript ion of

the security issues associated with these different features of an agent- based system.

4. 3. 2 Security in Agent Based Java� Indubitably, security is the most important issue on which the applicability of a-

gent systems rides
[25~ 28]

. No matter what the features of an implementation are, if they can�t provide an adequate secu-

rity model for all the issues involved, then this implementation will definitely fail. There has even been a suggestion to-

wards the need for �security profiles� in agent systems to see if any given system adequately addresses all the issues

concerned
[29]

.

In current operating systems, the system resources are the most important parts of the system and thus should be

protected from malicious use. It is acceptable that, in such a system, the solution for the security problem is based on

splitting the domain into a user space and a kernel space.This is not the case in an agent system where the user has a

vested interest in the agent and part of its resources that the system should not have control over.

4. 3. 3 A Practical Solution� Most of the research about security on Agent Based Comput ing focuses on the �protect

the machine from agents� and �protect an agent from other agents� problems[26, 30, 31] .Moreover, those works that ad-

dress the other secure agent- based computing issues either intend to solve the problem but don�t have a real solution

yet
[25]

or just mention that these problems are important and need to be solved.

Here,we propose a solution that also addresses the �protect the agent from the machine� issue,which is a very im-

portant concern from the user�s point- of view. One major design is to conceive a practical solution using current tech-

nology.Therefore, our solution is both simple to understand and to implement, and does not depend upon a net- wide ser-

vice, like a secure public key distribution system.The PEM acceptance problem (Privacy- EnhancedMail[32]) has shown

that this kind of new distributed net- wide directory infrastructure turns into a barrier to the adoption of the solutions

based on it[33] .Note that if such an infrastructure became available, the rational for this choice changes completely. But

we don�t expect this to be the case in the next few years.

Another important design decision is that an agent not concerned about security should incur any security over-

head. In otherwords, our goal is to design a flexible solution that does not require the use of the security mechanisms by

the agents that don�t need them. Thus, all the schemes described here are to be added to the traditional features found

in an ASE.

Our approach to the �protect the machine from agents� problem is the common one: the agent runs in a restricted

environment and all accesses to resources have to pass through a security monitor. This monitor decides if the agent is

interpreted. For example, the Java Agent provides a framework to implement this kind of monitor.

The problem resides in deciding whether a particular agent has access to a given resource. An easy solution is

defining the same rights to all agents (as Java does[30]) .However, this is a very restrictive solution. A better approach

would be to grant different accesses depending on who owns the agent. Since we have decided not to use a distributed

authentication service,we have to rely on passwords to securely identify the agent owner. Protocols that safely negotiate

cryptographic keys (like SSL[34]) must be used to avoid the discovery of passwords by monitoring the network. Default

access rights can be supplied for unknown users. Of course, a group of hosts can share the same password database, but

our solution doesn�t require this nor does it define how this can be done. We call this step the authentication phase.

In our scheme, we choose a conventional Access Control List (ACL) mechanism to decide if an agent can or can-

not access a resource, given that the system knows who owns the agent.

It is clearly impossible to protect the agent from the machine on which it runs.Agent executes when and if its host

machine wants.An agent needs to care about this question before it moves into a machine. Our solution requires that the

machine send a counter- password to the agent during the authentication phase.This means that both agent and target

33第 1期� � � � � � � � � � � � � � 刘传才:基于 Java的 Agents 的安全问题

machine need to know a triple (user, password, and counter- password) and allows the agent to determine if it is mov-

ing to a known machine.

In spite of that, an agent can still have some critical information stolen by a known machine.The shopping around

agent is a perfect example of that situat ion.One of the digital stores the agent visits can steal the money being carried

by the agent . To avoid that, we require that an agent concerned about security return back to its home (and so, com-

pletely secure) site after it f inishes its job at the target site.Additionally, an agent is to carry only the resources and in-

formation it may need into the destination host. Observe that this implies that a secure agent cannot move about ; it has

to do a single round- trip. However, the same kind of service can still be provided because an agent can travel again

after its returns to its home site. Actually, it has to be modified to carry useful informat ion in the new destination, but

this also doesn�t limit the development of any type of agent based applicat ion. We call such a specialized, restricted a-

gent a minimal agent .

The �protect an agent from other agents� problems can be seen as a special case of the �protect the machine from

the agents� problem, except for the communicat ion issues. One could think of using the same password plus ACL solu-

tion to cope with the secure communication issue. But, because any message could be intercepted by the host which is

running the agent (even if the message is encrypted, the host can wait until the agent decrypts it) , this is not worth-

while. Thus,we don�t provide a special mechanism to make message- based communication more secure. If an agent

needs this kind of service, it should migrate to the destination host (returning first to the home host) and communicate

locally.

�Protect a group of machines from an agent� is a very difficult problem because even if the resource- hoarding a-

gent is detected and killed, the owner of that agent can send a new instance of it again. Consequently, it is necessary to

determine who the owner (or at least , the originator machine) of the resource gathering agent is and log this information

in order to figure out who is creat ing this kind of malicious agent . The problem is how to know who the owner of a par-

ticular agent is or from which machine it has been sent. Because, in our solution,we can determine this just for the a-

gents that are using the services proposed here, there is no way to solve this problem for the general case of completely

mobile agents.

The currency- based resource- allocat ion scheme suggested by Gray doesn�t solve this problem in all cases e-i

ther. In many cases, the machines on which an agent can run don�t want to ask for some form of electronic currency be-

cause it is in the machine�s best interest that the agent run and obtain as much information as it wants. The perfect ex-

ample is a digital shopping center. In these cases, currency schemes don�t really work.

5 � Conclusions
With the development of computer networks, software agents are perhaps a very useful approach in building a large

set of network applications.However, the security problems that can be raised by supporting agents can prevent thewide

use of agent based applicat ions. Moreover, distributed security concerns tend to become more important as we begin to

use open computer networks to transfer information of more direct economic value.There, a secure way to use agents is

fundamental to make viable their application in public networks, like the Internet.

The security of Java agent mainly involves two problems: one is Java language itself, the other is secure agent mod-

el. Therefore, we first introduce a new module system to Java that improves upon many of the deficiencies of the Java

package system and gives the programmer more control over dynamic linking. Second,we develop a general agent model

and discuss general security issues in that model. Finally, we propose a practical solution that addresses some of those

security issues.

However, the authentication does not guarantee that the machine will not attack the agent. In order to reduce the

damage that such kind of attack could incur, we introduce the concept of minimal agent ,which carries only the informa-

tion it may need into the host and always returns back to its safe home host when its job is done.

34 吉首大学学报(自然科学版) 第 24 卷

It is obvious that our solution involves some restrict ions in the way agents can be used.Nevertheless, any applica-

tion that can be built in the standard �insecure� agent model,

The agent security problems are very hard. An appealing alternative way to address these problems is the soft se-

curity approach
[27, 28]

. Soft security means that privileges are granted, as they are needed, with the current risks taken

into consideration. As opposed to soft security, hard (i. e. , traditional) security uses methods that don�t reevaluate

granted privileges.

References:

[1] � BAUER LUJO, APPLE ADREW W, FELTEN EDWARD W. Mechanisms for Secure Modular Programming in Java[R] . Technical Re-

port: TR- 603- 99, Department of Computer Science, Princeton University , 1999.

[2] � GOSLING JAMES, JOY BILL , STEELE GUY. The Java Language Specification, the Java Series[M] . Reading ,Massachusetts: Addison

- Wesley, 1996.

[3] �MILNER ROBIN ,TOFTEMADS,HARPER ROBERT. The Definition of Standard ML[M] . Cambridge,MA: MIT Press, 1990.

[4] � BLUME MATTHIAS, APPLE ANDREW. Hierarchical Modularity [M] . ACM Transactions on Programming Language and Systems,

1999.

[5] � CARDELLI LUCA. Program Fragments, Linking, and Modularization[A] . 24th ACM SIGPLAN- SIGACT Symposium on the Principle

of Programming Languages [C] . Baltimore, 1997. 266- 277.

[6] � LINDHOLM TIM , YELLIN FRANK. The Java Virtual Machine Specification[M] . Reading,Massachusetts: Addison- Wesley, 1997.

[7] � LEROY XAVIER, ROUAIX FRANCOIS. Security Properties of Typed Applets[A] . Conference Record of POPL � 98: The 25 ACM

SIGPLAN- SIGACT Symposium on Principles of Programming Languages[C] . San Diego, California, 1998. 391- 403.

[8] � SUN MICROSYSTEMS. Java Core Reflection[EB/ OL] . http: / / www. java. sun. com/ products/ jdk/ 1. 2/ docs/ guide/ reflection/ spec/

java- reflection. doc. html, 1998.

[9] � GRAFINKEL, SIMSON, GENE SPAFFORD. Practical UNIX & Internet Security [R] . O�Reilly & Associates, Inc. , 1996.

[10] � KAUFMAN CHARLIE, PERMAN RADIA, SPECINER MIKE. Network Security Private Communication in a Public Worlds[M] . En-

glewood Cliffs, NJ: Prentice Hall, 1995.

[11] � PFLEEGER, CHARLES P. Security in Computing(2nd Edition) [M] . Englewood Cliffs, NJ: Prentice Hall, 1997.

[12] � SCHNEIER, BRUCE. Applied Cryptography(2nd Edition) [M] . San Francisco, US: John Wiley & Sons, 1996.

[13] � DEAN DREW, FELTEN EDWARD W,WALLACH DAN S, etc. Java Security: Web Browsers and Beyond[A] . DOROTHY E DEN-

NING, PETER J DENNING. Internet Beseiged: Countering Cyberspace Scofflaws[C] . ACM Press, 1997.

[14] � GREG NELSON . Systems Programming With Modula- 3[M] . Englewood Cliffs, New Jersey: Prentice Hall Series in Innovative Tech-

nology, Prentice Hall, 1991.

[15] � DEAN DREW.The Security of Static.Typing with Dynamic Linking[A] . Fourth ACM Conference on Computer and Communications

Security[C] . Zurich, Switzerland, 1997.

[16] � DEAN RICHARD DREWS. Formal Aspects of Mobile Code Security[D] . Princeton University , 1999.

[17] � LUIS VALENTE. Safety in Telescript[EB/ OL] . http: / / www. catless. ncl. ac. uk/ Risks/ 15. 39. html# subj6, 1994.

[18] � GENERAL MAGIC. An Introduction to Safety and Security in Telescript[EB/ OL] . http: / / www. genmagic. com/ Telescript/ security.

html, 1995.

[19] � SEARLE, JOHN R. Speech Acts[M] . Cambridge, UK: Cambridge University Press, 1969.

[20] � SEARLE, JOHN R.The Philosophy of Language[M] . Oxford, UK: Oxford University Press, 1971.

[21] � SEARLE, JOHN R, VANDERVEKEN DANIEL. Foundations of Illocutionary Logic[M] . Cambridge,UK: Cambridge University Press,

1985.

[22] � CHANG M K, WOO C C. A Speech- Act- Based Negotiation Protocol: Design, Implementation, and Test Use[J] . ACM Transaction

on Information Systems, 1994, 12(4) : 360- 382.

[23] � FININ T. KQML as an Agent Communication Language [A] . The Proceedings of the Third International Conference on Information

and Knowledge Management[C] . ACM Press, 1994.

[24] � LABROU Y, FININ TIM. A Semantics Approach for KQML- A General Purpose Communication Language for Software Agents[A] .

The Proc. of the Third International Conference on Information and Knowledge Management[C] . ACM Press, 1994.

35第 1期� � � � � � � � � � � � � � 刘传才:基于 Java的 Agents 的安全问题

[25] � ROBERT S GRAY. Agent Tcl: A Flexible and Secure Mobile- agent System. Proc. of the Fourth Annual Tcl/ Tk Workshop (TCL 96)

[EB/ OL] . http: / / www. cs. dartmouth. edu/ agents/ papers/ tcl96. ps. Z, 1996.

[26] � OUSTERHOUT JOHN, LEVY JACOB, WELCH BRENT. The Safe- Tcl Security Model[M] . SunM icrosystems Laboratories, 1996.

[27] � RASMUSSON ANDREAS, JANSSON SVERKER. Personal Security Assistance for Secure Internet Commerce. New Security

Paradigms�96 Workshop[EB/ OL] . http: / / www. sics. se/ ara/ doc/ NSP/ NSP. html, 1996.

[28] � RASMUSSON LARS, JANSSON SVERKER. Simulated Social Control for Secure Internet Commerce. New Security Paradigms� 96

Workshop[EB/ OL] . http: / / www. sics. se/ lra/ nsp96/ nsp96. html, 1996.

[29] � BROWNE SHIRLEY. Need for a Security Profile for Agent Execution Environments CIKM�95 Workshop on Intelligent Information

Agents[EB/ OL] . http: / / www. cs. umbc. edu/ %7ecikm/ iia/ submitted/ viewing/ browne. html, 1995.

[30] � SUN MICROSYSTEMS.The Java Language: An overview[EB/ OL] . ftp: / / ftp. javasoft. com/ docs/ java- overview. ps, 1995.

[31] � JOHANSEN DAG, RENESSE ROBERT VAN, SCHEIDNER FRED. An Introduction to the TACOMA Distributed System: Version 1.

0.Technical Report: 95- 23, Department of Computer Science,University of Tromso[EB/ OL] . http: / / www. cs. uit. no/ Lokalt/ Rap-

porter/ Reports/ 9523. html, 1995.

[32] � LINN J, KENT S, BALENSON D, etc. Privacy Enhancement for Internet Electronic Mail: Parts I- IV. Internet RFC 1421- 1424

[EB/ OL] . ftp: / / ftp. internic. net/ rfc/ rfc142[1- 4] . txt, 1993.

[33] � BRADEN R, CLARK D, CROCKER S, etc. Report of IAB Workshop on Security in the Internet Architecture. Internet RFC 1636

[EB/ OL] . ftp: / / ftp. internic. net/ rfc/ rfc1636. txt, 1994.

[34] � FREIER ALAN O, KARLTON PHILIP, KOCHER OAUL C. The SSL Protocol: Version 3. 0. Internet Draft[EB/ OL] . http: / / www.

home. netscape. com/ eng/ ssl3/ ssl- toc. html, 1996.

基于 Java的Agents的安全问题

刘传才
(福州大学信息科学与技术学院, 福建 福州� 350002)

� � 摘� 要 :在分布式系统中, 随着计算机网络的普及,编程方式也发生了变化, 即由远程调用方式转变为远距编程方式,

这种变化可减少网络流量、提高系统性能. 软件 agents 适合完成这项任务. 使用 agents 能带来多种好处 ,且不利方面很少 ,这

包括附加的安全问题.新的组件系统能改进 Java套装软件系统的多个缺陷,使编程者能获得更多的对动态连接的控制权,

实现 Java- agent的自主安全. agent模型中出现的一般安全问题,可通过一种实用的方法加以解决.

� � 关键词:软件 agents; 远程调用;动态连接; 自主安全

� � 中图分类号:TP311 文献标识码: A

36 吉首大学学报(自然科学版) 第 24 卷

